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ABSTRACT
THE NEUTRON-STAR EQUATION OF STATE AND
GRAVITATIONAL WAVES FROM COMPACT BINARIES
By
Benjamin D. Lackey

The University of Wisconsin—Milwaukee, 2012

Under the Supervision of Professor John L. Friedman

The equation of state (EOS) of matter above nuclear density is currently uncertain by
almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory
for studying high density matter. In order to systematize the study of the EOS from NS
observations, we introduce a parametrized high-density EOS that accurately fits theoretical
candidate EOSs. We then determine the ability of several recent and near-future electro-
magnetic observations to constrain the parameter space of our EOS. Recent observations
include measurements of masses, gravitational redshift, and spin period, and we find that
high mass observations are the most useful at constraining the EOS. Reliable simultaneous
mass-radius measurements or mass—moment of inertia measurements in the near future, on
the other hand, would provide a dramatically stronger constraint by requiring the allowed
parameters to lie on a hypersurface of the full parameter space.

In addition to electromagnetic observations, binary neutron star (BNS) and black hole-
neutron star (BHNS) coalescence events observed with gravitational-wave detectors offer
the potential to dramatically improve our understanding of the EOS. Information about
the EOS is encoded in the waveform through tidal interactions, and for BNS systems,
the inspiral waveform depends on the EOS through a single parameter called the tidal
deformability. Using recent numerical BHNS simulations we find that the entire BHNS
inspiral-merger-ringdown waveform also depends on the EOS exclusively through the same
tidal deformability parameter. Using these BNS and BHNS waveforms, we examine the
ability of second generation detectors now in construction and planned third generation

detectors to extract information about the EOS.
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Chapter 1

The equation of state and stellar

structure

At the most fundamental level, the nature of matter near nuclear density (2.8 x 1014 g/cm?)
and above is described in terms of an N-body system of quarks and leptons interacting
through electromagnetism and the strong and weak interactions. This computationally
intractable problem can, however, be simplified because up to a few times nuclear density,
quarks are in the form of nucleons (e.g. neutrons, protons, and hyperons) and mesons
(e.g. pions and kaons) interacting through nuclear interactions. As the density increases,
it becomes energetically favorable to have an increasing fraction of strange quarks, first
in hyperons or mesons, then in the form of free quarks when these composite particles
eventually dissolve at several times nuclear density. A wide range of approximations exist
for the interactions of these exotic particles, and the free parameters can be calibrated to
experimental data from, for example, heavy ion collisions. However, there remains much
uncertainty in extrapolating to bulk nuclear matter.

Unlike the matter in terrestrial experiments, the cores of neutron stars (NS), consisting
of bulk nuclear matter in its ground state with densities that can exceed 10'° g/cm?, are an
ideal subject for understanding ground-state matter as it is described through the equation
of state (EOS). This dissertation will focus on several methods for extracting information
about the EOS from electromagnetic observations of neutron stars as well as gravitational-
wave observations of neutron stars in coalescing compact binary systems, including binary
neutron star (BNS) and black hole-neutron star (BHNS) systems.

We will begin in this chapter by discussing several thermodynamic quantities related to
the EOS, and then describe how the EOS is related to observable properties of a neutron

star through the relativistic stellar structure equations. In the next chapter, we will discuss
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a parametrized phenomenological model for the EOS and how a wide range of observations
can be used to constrain the parameters of this model. Chapter 3 will focus on point-particle
interactions in coalescing binaries, and Chapter 4 will focus on tidal interactions in binaries
that contain at least one neutron star. Chapter 5 will then discuss how the parameters of
a binary inspiral can be extracted with gravitational-wave detectors. In Chapter 6, we will
examine the detectability of EOS information in BNS inspirals through a quantity known
as the tidal deformability A. Finally, in the last two chapters we will examine the EOS
information that can be extracted from BHNS inspiral, merger, and ringdown for systems
with both nonspinning (Chapter 7) and aligned-spin (Chapter 8) black holes.

Conventions: Unless otherwise stated, we set G = ¢ = 1.

1.1 Thermodynamic relations and the equation of state

For the applications in this dissertation, nuclear reactions occur on a timescale much smaller
than changes in the neutron-star configuration, and so neutron-star matter is well described
by a perfect fluid in equilibrium. The first law of thermodynamics for a fluid element
containing N baryons states that the total energy F, including the rest-mass energy of the
fluid element, is [I]

dE = —pdV +TdS + pdN. (1.1)

Here, p, V, T, S, and u, are the pressure, volume, temperature, entropy, and baryon
chemical potential. The baryon chemical potential is defined as the increase in energy when
a baryon is added to the fluid element, and this includes the energy needed to, for example,
add other particles to conserve charge.

We can remove the last term in Eq. by introducing the Gibbs free energy G =
E + pV — TS, and using the relation, derived in Ref. [2],

G=FE+pV —TS = uN. (1.2)

In terms of the rest mass of the fluid element My and the specific Gibbs free energy g =
G /My = pu/mp, the last term in Eq. (1.1) becomes

udN = 2 amy = gdMy, (1.3)
mp

where mp = 1.66 x 10724 g is the baryon rest mass. Because we will consider a fluid element
that adjusts so that the baryon number N is constant, the rest mass is conserved as well,

and this term is therefore zero [3].
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We will find it useful to rewrite the first law of thermodynamics in terms of only intensive
quantities. We will use baryon number density n = N/V, rest mass density p = My/V =
mpn, energy density e = E/V, and specific entropy s = S/My. The first law becomes

1
dS = —pd= + Tds, (1.4)
p P

or equivalently
de = hdp + pTds, (1.5)

where the specific enthalpy h is

_E+pV  e+p

h
My p

(1.6)

In addition to the first law, the various thermodynamic quantities are related by an
equation of state

e=¢(p,s), p=pp,s). (1.7)

For the neutron stars considered in this dissertation, the temperature will be far below the

Fermi temperature, and thus we will only need to consider the isentropic one-parameter
cold EOS

e=¢(p), p=0pp). (1.8)

The above two expressions in Eq. (1.8 are not independent because the quantities p, €, and
p are related by the first law with ds = 0. We thus only need to specify a relation between

two of the three quantities to get the third quantity using one of the following relations

dle/p) € e /p D (/e dé )

2 /

p=p L —==4 | =dy, = po exp , 1.9
P dp popo Sy PP PoP=p w €D (1.9)

where €y is the energy density at some rest-mass density pg. At the surface of the star

defined by p — 0, g — 0 and py — 0 for a standard EOS, and the ratio ¢y/pp — 1. Also,
if the surface density is used for pg, then the last expression in Eq. is undefined.

In the following chapters we will find it useful in solving stellar structure equations to
define two dimensionless, enthalpy-like quantities. The first quantity is the pseudo-enthalpy
H defined by [4, 5]

dH =dlnh = ——, (1.10)
€E+p
and therefore
P dy
0o €+p
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The second quantity 1 used in Ref. [5], which we will call the Newtonian specific enthalpy,
is defined in terms of the Newtonian energy Fnewt = F — M)

o ENewt +pV
n= —"——

=h—-1=¢e" -1, 1.12
My e (1.12)

The stiffness of an EOS is often defined in terms of the polytropic exponent. For highly
degenerate matter, we distinguish between two types of polytropic exponents, I' and -,

defined by i i
p_ dlp _dlnp

T dlnp | dlne
We note that for a one-parameter EOS with constant entropy, I is the adiabatic index. The

(1.13)

two quantities can be related to each other using the first law of thermodynamics

e+pdp e+p

T = = 1.14
p de € ( )

We define two types of polytropic EOS
p=Kyp", p=Kc, (1.15)

where K, and K, are constants. We note that the first type of polytrope is used far more
often in the literature because it is more closely associated with the underlying microphysics.
For example, a nonrelativistic degenerate Fermi gas has an EOS that scales as p o p°/3,
and for a highly relativistic degenerate Fermi gas, p oc p*/3 .

Equations of state must satisfy the following two conditions. The first, thermodynamic
stability, requires the EOS be monotonic (dp/dp > 0 and dp/de > 0), and therefore the
adiabatic indices I' and + must be positive. The second, causality, requires the speed of

sound vs be less than the speed of light

d
vs =1/ L <1. (1.16)
de
In terms of the polytropic exponents

[ pIl /
’US = p = m7 (117)
€E+Dp €

and therefore in the limit of very high density, where the majority of the energy density

comes from pressure, the EOS is causal only when I' < 2 and v < 1.

1.2 Evaluating mass, radius, and moment of inertia

The moment of inertia of a rotating star is the ratio I = J/€, with J the asymptotically

defined angular momentum. In finding the moment of inertia of spherical models, we use
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Hartle’s slow-rotation equations [6], adapted to piecewise polytropes in a way we describe

below. The metric of a slowly rotating star has, to order €2, the form
ds? = —e2®Mai? + AN dr? — 2w (r)r? sin® Ododt + r2d6? + 12 sin? dp?, (1.18)

where ® and X are the metric functions of the spherical star, given by

) = (1—27"—(7”))_1, (1.19)

r
dd 1 dp
— = - — 1.20
dr e+pdr’ (1.20)
dp m + 4nrdp
— = - —_ 1.21
dr (e +p) r(r—2m)’ (1.21)
‘Z—T = dmrle. (1.22)
The frame-dragging w(r) is obtained from the ¢¢ component of the Einstein equation in the
form
1d(,.dw 4dj
el = Yo = 1.2
r4 dr <Tjdr)+rdrw 0 (1.23)

where w = ) — w is the angular velocity of the star measured by a zero-angular-momentum

j(r) =e® (1 - Q—m) " (1.24)

observer and

r
The angular momentum is obtained from w, which has outside the star the form w = 2.J/r3.
In adapting these equations, we roughly follow Lindblom [4], replacing r as a radial
variable by a generalization 1 := h — 1 of the Newtonian enthalpy. Because 7 is monotonic
in 7, one can integrate outward from its central value to the surface, where n = 0.
This replacement exploits the first integral he® = \/m of the equation of hy-
drostatic equilibrium to eliminate the differential equation for @; and the enthalpy,
unlike € and p, is smooth at the surface for a polytropic EOS. Eqgs. (1.21H1.23|) are then

equivalent to the first-order set

3_:; - mr-f-r4:rr23rg()77) n j— 1 (1.25)
Cfi_: = 47‘(‘7’26(77)3—; (1.26)
Z—i = aZ—; (1.27)
o _ [ deples i) as

where « := dw/dr.
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The integration to find the mass, radius, and moment of inertia for a star with given
central value n = 1. proceeds as follows: Use the initial conditions 7(n.) = m(n.) = a(n.) =
0 and arbitrarily choose a central value wy of w. Integrate to the surface where n = 0, to
obtain the radius R = r(n = 0) and mass M = m(n = 0). The angular momentum J is

found from the radial derivative of the equation

To0- i—;{ (1.29)
evaluated at r = R, namely
J = %R"‘a(R), (1.30)
and € is then given by
Q=w(R)+ % (1.31)

These values of 2 and J are each proportional to the arbitrarily chosen @y, implying that

the moment of inertia J/ is independent of wy.
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Chapter 2

Phenomenologically parametrized

EOS

2.1 Introduction

Because the temperature of neutron stars is far below the Fermi energy of their constituent
particles, neutron-star matter is accurately described by the one-parameter equation of
state (EOS) that governs cold matter above nuclear density. The uncertainty in that EOS,
however, is notoriously large, with the pressure p as a function of baryon mass density
p uncertain above nuclear density by as much as an order of magnitude. The phase of
the matter in the core of a neutron star is similarly uncertain: Current candidates for the
EOS include non-relativistic and relativistic mean-field models; models for which neutron-
star cores are dominated by nucleons, by hyperons, by pion or kaon condensates, and by
strange quark matter (free up, down, and strange quarks); and one cannot yet rule out the
possibility that the ground state of cold matter at zero pressure might be strange quark
matter and that the term “neutron star” is a misnomer for strange quark stars.

The correspondingly large number of fundamental parameters needed to accommodate
the models’ Lagrangians has meant that studies of astrophysical constraints (see, for exam-
ple, [7, 18, 9] 10, 11] and references therein) present constraints by dividing the EOS candi-
dates into an allowed and a ruled-out list. A more systematic study, in which astrophysical
constraints are described as constraints on the parameter space of a parametrized EOS, can
be effective only if the number of parameters is smaller than the number of neutron-star
properties that have been measured or will have been measured in the next several years. At
the same time, the number of parameters must be large enough to accurately approximate
the EOS candidates.
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A principal aim of this chapter is to show that, if one uses phenomenological rather
than fundamental parameters, one can obtain a parametrized EOS that meets these con-
ditions. We exhibit a parametrized EOS, based on specifying the stiffness of the star in
three density intervals, characterized by the adiabatic index I' = dlog P/dlog p. A fourth
parameter translates the p(p) curve up or down, adding a constant pressure—equivalently
fixing the pressure at the endpoint of the first density interval. Finally, the EOS is matched
below nuclear density to the (presumed known) low-density EOS. An EOS for which I is
constant is a polytrope, and the parametrized EOS is then piecewise polytropic. A simi-
lar piecewise-polytropic EOS was previously considered by Vuille and Ipser [12]; and, with
different motivation, several other authors [13, [I4) [5, I5] have used piecewise polytropes
to approximate neutron-star EOS candidates. In contrast to this previous work, we use
a small number of parameters chosen to fit a wide variety of fundamental EOSs, and we
systematically explore a variety of astrophysical constraints. Like most of the previous
work, we aim to model equations of state containing nuclear matter (possibly with various
phase transitions) rather than pure quark stars, whose EOS is predicted to be substantially
different.

As we have noted, enough uncertainty remains in the pressure at nuclear density, that
one cannot simply match to a fiducial pressure at p,,.. Instead of taking as one parameter
the pressure at a fiducial density, however, one could match to the pressure of the known
subnuclear EOS at, say, 0.1 pnyc and then use as one parameter a value of I'g for the interval
between 0.1ppye and ppue. Neutron-star observables are insensitive to the EOS below ppyc,
because the fraction of mass at low density is small. But the new parameter I'g would
indirectly affect observables by changing the value of the pressure at and above nuclear
density, for fixed values of the remaining I';. By choosing instead the pressure at a fixed
density p1 > pnuc, we obtain a parameter more directly connected to physical observables. In
particular, as Lattimer and Prakash [8] have pointed out, neutron-star radii are closely tied
to the pressure somewhat above nuclear density, and the choice p; = p(p1) is recommended
by that relation.

In general, to specify a piecewise polytropic EOS with three density intervals above
nuclear density, one needs six parameters: two dividing densities, three adiabatic indices
I';, and a value of the pressure at an endpoint of one of the intervals. Remarkably, however,
we find (in Sec. that the error in fitting the collection of EOS candidates has a clear
minimum for a particular choice of dividing densities. With that choice, the parametrized
EOS has three free parameters, I't, T’y and py, for densities below 10'® g/cm? (the density

range most relevant for masses ~ 1.4Mg), and four free parameters (an additional I's) for
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densities between 10'® g/cm? and the central density of the maximum mass star for each
EOS.

With the parameterization in hand, we examine in Sect. astrophysical constraints on
the EOS parameter space beyond the radius-p; relation found by Lattimer and Prakash [§].
Our emphasis in this first study is on present and very near-future constraints: those as-
sociated with the largest observed neutron-star mass and spin, with a possible observation
(as yet unrepeated) of neutron-star redshift, with a possible simultaneous measurement of
mass and radius, and with the expected future measurement of the moment of inertia of
a neutron star with known mass. (We do not consider other observables, such as those
associated with glitches and cooling, which depend not only on the EOS but also on dy-
namics, transport coefficients, and thermodynamic derivatives. The latter quantities are
generally much more uncertain than the EOS and related observables such as the stellar
radius, and are always more model dependent.) Ref. [16] investigates constraints obtainable
with gravitational-wave observations in a few years.

The constraints associated with the largest observed mass, spin, and redshift have a
similar form, each restricting the parameter space to one side of a surface: For example, if
we take the largest observed mass to be 1.93 Mg, then the allowed parameters correspond
to EOSs whose maximum mass is at least 1.93 M. We can regard Mp.x as a function on
the 4-dimensional EOS parameter space. The subspace of EOSs for which M.« = 1.93M
is then described by a 3-dimensional surface, and constraint is a restriction to the high-
mass side of the surface. Similarly, the observation of a 716 Hz pulsar restricts the EOS
parameter space to one side of a surface that describes EOSs for which the maximum spin is
716 Hz. Thus we can produce model-independent extended versions of the multidimensional
constraints seen in [17].

The potential simultaneous observation of two properties of a single neutron star (for
example, moment of inertia and mass) would yield a significantly stronger constraint: It
would restrict the parameter space not to one side of a surface but to the surface itself. And
a subsequent observation of two different parameters for a different neutron star would then
restrict one to the intersection of two surfaces. We exhibit the result of simultaneous obser-
vations of mass and moment of inertia (expected within the next decade for one member of
the binary pulsar J0737-3039 [18, [19]) and of mass and radius.

Conventions: We use cgs units, denoting rest-mass density by p, and (energy density)/c?
by €. We define rest-mass density as p = mpn, where mg = 1.66 x 1072* g and n is the
baryon number density. In Sec. however, we set ¢ = 1 to simplify the equations and

add a footnote on restoring c.
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2.2 Candidates

A test of how well a parametrized EOS can approximate the true EOS of cold matter
at high density is how well it approximates candidate EOSs. We consider a wide array of
candidate EOSs, covering many different generation methods and potential species. Because
the parametrized EOS is intended to distinguish the parts of parameter space allowed and
ruled out by present and future observations, the collection includes some EOSs that no
longer satisfy known observational constraints. Many of the candidate EOSs were considered
in Refs. [8, 19, [I7]; and we call them by the names used in those papers.

For plain npep nuclear matter, we include:
e Two potential-method EOSs (PAL6 [20] and SLy [21]);
e cight variational-method EOSs (AP1-4 [22], FPS [23], and WFF1-3 [24]);
e one nonrelativistic (BBB2 [25]) and three relativistic (BPAL12 [26], ENG [7] and MPA1 [27])
Brueckner-Hartree-Fock EOSs; and
e three relativistic mean field theory EOSs (MS1-2 and one we call MS1b, which is identical
to MS1 except with a low symmetry energy of 25 MeV [28§]).

We also consider models with hyperons, pion and kaon condensates, and quarks, and
will collectively refer to these EOSs as K/7/H /q models.
e One neutron-only EOS with pion condensates (PS [29]);
e two relativistic mean field theory EOSs with kaons (GS1-2 [30]);
e one effective potential EOS including hyperons (BGN1H1 [31]); eight relativistic mean
field theory EOSs with hyperons (GNH3 [32] and seven variants H1-7 [I7]; one relativistic
mean field theory EOS with hyperons and quarks (PCL2 [33]); and
e four hybrid EOSs with mixed APR nuclear matter and colour-flavor-locked quark matter
(ALF1-4 with transition density p. and interaction parameter ¢ given by p. = 2ng, ¢ = 0;
pe = 3ng, ¢ = 0.3; pc = 3ng, ¢ = 0.0; and p. = 4.5n¢, ¢ = 0.3 respectively [34]).

The tables are plotted in Fig. [I] to give an idea of the range of EOSs considered for this

parameterization.

2.3 Piecewise polytrope

A polytropic EOS has the form,
p(p) = Ko, (2.1)
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Figure 1 : Pressure versus rest mass density for the set of candidate EOS tables considered in the parame-

terization.

with p the rest-mass density and I' the adiabatic index, and with energy density € fixed by
1

the first law of thermodynamics as = —p d—. For p of the form 1} the first law has
P P

the immediate integral

1
g = (1 + a) —+ prF_l, (22)

where a is a constant; and the requirement lirré ¢/p = 1 implies a = 0 and the standard
p—

relation e = p + 17

The parametrized EOSs we consider are piecewise polytropes above a density pg, satisfy-
ing Eqgs. and on a sequence of density intervals, each with its own K; and I';: An
EOS is piecewise polytropic for p > pg if, for a set of dividing densities pg < p1 < p2 < ---,

the pressure and energy density are everywhere continuous and satisfy
T, € 1
p(p) = Kip'*, d; = —pd;, pi-1 < p < pi (2.3)

Then, for I" # 1,

K
elp) = (L+ai)p+ =——p", (2.4)
T, — 1

'In this section, for simplicity of notation, ¢ = 1. To rewrite the equations in cgs units, replace p and K

in each occurrence by p/c® and K/c?. Both ¢ and p have units g/cm?®.
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. f(Pz‘—l) K; 1,1
with a; = —-1- T
Ho i Pi—1 I, — 1p171

7
The specific enthalp h := (e + p)/p, sound velocity vs = \/dp/de, and internal energy

e:=¢€/p— 1, are given in each density interval by

T .,
hip) =1+ai+ & - 1K¢pr’ L (2.5)
(2
Lip
— 2.6
Us(p) 6+p’ ( )
K; ._
e(p) = a; + T, _Z 1prl L (2.7)

Each piece of a piecewise polytropic EOS is specified by three parameters: the initial
density, the coefficient K;, and the adiabatic index I';. However, when the EOS at lower
density has already been specified up to the chosen p;, continuity of pressure determines

the value of K 1:

)

Thus each additional region requires only two additional parameters, p; and I';;1. Further-
more, if the initial density of an interval is chosen to be a fixed value for the parameterization,

specifying the EOS on the density interval requires only a single additional parameter.

2.4 Fitting the candidate EOSs

To fit the true neutron-star EOS, we must ensure that a wide variety of candidate EOSs
are well fit by some set of parameter values of our parametrized EOS. In this section we
describe the fit we use and the results of that fit.

There is general agreement on the low-density EOS for cold matter, and we adopt
the version (SLy) given by Douchin and Haensel [2I]. Substituting an alternative low-
density EOS from, for example, Negele and Vautherin [35], alters by only a few percent the
observables we consider in examining astrophysical constraints, both because of the rough
agreement among the candidate EOSs and because the low density crust contributes little
to the mass, moment of inertia, or radius of the star.

Each choice of a piecewise polytropic EOS above nuclear density is matched to this low-
density EOS as follows: The lowest-density piece of the piecewise polytropic p(p) curve is
extended to lower densities until it intersects the low-density EOS, and the low-density EOS

2 A note on terminology: When the entropy vanishes, the specific enthalpy, h = (e + p)/p, and Gibbs free
energy, g = (e + p)/p — T's, coincide. For nonzero entropy, it is the term gdMo = pudN that appears in the

first law of thermodynamics, where p = g/mg is the chemical potential.
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is used at densities below the intersection point. This matching method yields a monotically
increasing p = p(p) without introducing additional parameters. It omits EOSs with values
of p; and I'y that are incompatible, i.e. for which the slope of the logp vs logp curve is
too shallow to reach the pressure p; from the low-density part of the EOS. However it still
accommodates a much larger region of parameter space than that spanned by the candidate
EOSs. (The precise choice of matching algorithm has little influence on the final fit for the
reasons given in the previous paragraph.)

The accuracy with which a piecewise polytrope {p;, K;,I';}, approximates a candidate

EOS is measured by the rms residual of the fit to m tabulated points (pj,p;):

;Z > [lg<Kppp>] (2.9)

Pi<pi<pi+1

In each case, we compute the residual only up to pmax, the central density of the maximum
mass nonrotating model based on the candidate EOS. Because astrophysical observations
can depend on the high-density EOS only up to the value of ppax for that EOS, only the
accuracy of the fit below ppax is relevant.

The accuracy of a choice of parameter space is measured by the average residual of its
fits to each EOS in the collection. For each EOS, we use a Levenberg-Marquardt algorithm
to minimize the residual over the parameter space. Even with a robust algorithm, the
nonlinear fitting with varying dividing densities is sensitive to initial conditions. Multiple
initial parameters for free fits are constructed using fixed-region fits of several possible
dividing densities, and the global minimum of the resulting residuals is taken to indicate
the best fit for the candidate EOS.

We begin with a single polytropic region in the core, specified by two parameters: the
index I'1 and a pressure p; at some fixed density. Here, with a single polytrope, the choice
of that density is arbitrary; for more than one polytropic piece, we will for convenience take
that density to be the dividing density p; between the first two polytropic regions. Changing
the value of p; moves the polytropic p(p) curve up or down, keeping the logarithmic slope
I'1 = dlogp/dlogp fixed. The low-density SLy EOS is fixed, and the density py where
the polytropic EOS intersects SLy changes as p; changes. The polytropic index K is
determined by Eq. . This is referred to as a one free piece fit. We then consider
two-piece and three-piece fits: two polytropic regions within the core, specified by the four
parameters {p1,'1, p1, 2}, as well as three polytropic regions specified by the six parameters
{p1,T1, p1,T2, p3, T3}, where, in each case, p; = p(p1). Again changing p; translates the
piecewise-polytropic EOS of the core up or down, keeping its shape fixed.
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The accuracy of each parametization (one, two, or three pieces), measured by the rms
residual of Eq. (2.9)), is portrayed in Table The Table lists the average and maximum
rms residuals over the set of 34 candidate EOSs. (The “fixed” fit is described below.)

Table 1 : Average residuals resulting from fitting the set of candidate EOSs with various types of piece-
wise polytropes. Free fits allow dividing densities between pieces to vary. The fixed three piece fit uses
10147 g/cm3 or roughly 1.85pn4c and 10150 g/cm3 or 3.70pnyc for all EOSs. Tabled are the RMS residuals of
the best fits averaged over the set of candidates. The set of 34 candidates includes 17 candidates containing
only npeu matter and 17 candidates with hyperons, pion or kaon condensates, and/or quark matter. Fits

14.:
0 3

are made to tabled points in the high density region between 1 g/cm?® or 0.74pnuc and the central density

of a maximum mass TOV star calculated using that table.

Type of fit All npen  K/m/h/q
Mean RMS residual
One free piece 0.0386 0.0285  0.0494

Two free pieces 0.0147 0.0086 0.0210
Three fixed pieces 0.0127 0.0098  0.0157
Three free pieces  0.0071 0.0056 0.0086

Standard deviation of RMS residual

One free piece 0.0213 0.0161 0.0209
Two free pieces 0.0150 0.0060  0.0188
Three fixed pieces 0.0106 0.0063  0.0130
Three free pieces  0.0081 0.0039  0.0107

For nucleon EOSs, the four-parameter fit of two free polytropic pieces models the be-
haviour of candidates well; but this kind of four-parameter EOS does not accurately fit
EOSs with hyperons, kaon or pion condensates, and/or quark matter. Many require three
polytropic pieces to capture the stiffening around nuclear density, a subsequent softer phase
transition, and then final stiffening. On the other hand, the six parameters required to
specify three free polytropic pieces exceeds the bounds of what may be reasonably con-
strained by the small set of model-independent astrophysical measurements. An alternative
four parameter fit can be made to all EOSs if the transition densities are held fixed for all
candidate EOSs (see below).

The hybrid quark EOS ALF3, which incorporates a QCD correction parameter for quark
interactions, exhibits the worst-fit to a one-piece polytropic EOS with residual 0.111, to the
three-piece fixed region EOS with residual 0.042, and to the three-piece varying region EOS
with residual 0.042. It has a residual from the two-piece fit of 0.044, somewhat less than
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the worst fit EOS, BGN1H1, an effective-potential EOS that includes all possible hyperons
and has a two-piece fit residual of 0.056.

A good fit is found for three polytropic pieces with fixed divisions: between the first and
second pieces at p; = 10147 g/ cm? = 1.85pnuc and a division between the second and third

0150 g/ecm3. The EOS is specified by choosing the adiabatic indices

pieces fixed at po = 1
{I'1,T2,T'3} in each region, and the pressure p; at the first dividing density, p1 = p1(p1).
A diagram of this parameterization is shown in Fig. For this 4-parameter EOS, best
fit parameters for each candidate EOS give a residual of 0.043 or better, with the average
residual over 34 candidate EOSs of 0.013. Note that the density of departure from the fixed

low-density EOS is still a fitted parameter for this scheme.
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Figure 2 : The fixed-region fit is parametrized by adiabatic indices {I'1,T'2,I's} and by the pressure p; at
the first dividing density.

The dividing densities for our parametrized EOS were chosen by minimizing the rms
residuals over the set of 34 candidate EOSs. For two dividing densities, this is a two-
dimensional minimization problem, which was solved by alternating between minimizing
average rms residual for upper or lower density while holding the other density fixed. The
location of the best dividing points is fairly robust over the subclasses of EOSs, as illustrated
in Fig.

With the dividing points fixed, taking the pressure p; to be the pressure at p; = 1.85pnyc,
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Figure 3 : Subsets of EOSs with and without kaons, hyperons, meson condensates, or quarks, show a fairly
robust choice of dividing densities whose fit to the candidate EOSs minimizes residual error. The mean
plus one standard deviation of residuals for each subset of candidate EOSs is plotted against the choice of
lower and upper dividing densities p1 and p2. The left curves show mean residual versus p; with p2 fixed at

10'%° g/em®. The right three curves show mean residual versus p2, with p; fixed at 10'*7 g/cm?®.

is indicated by empirical work of Lattimer and Prakash [8] that finds a strong correlation
between pressure at fixed density (near this value) and the radius of 1.4M neutron stars.
This choice of parameter allows us to examine (in Sec. the relation between p; and the
radius; and we expect a similar correlation between p; and the frequency at which neutron-
star inspiral dramatically departs from point-particle inspiral for neutron stars near this
mass.

Since there are not many astrophysical constraints on the EOS, it is desirable to use
one of the four-parameter fits (two free pieces or three fixed). Observations of pulsars that
are not accreting indicate masses below 1.45 Mg (see Sec. , and the central density of
these stars is below pg for almost all EOSs. Then only the three parameters {p;,I'1,T'2}
of the fixed piece parameterization are required to specify the EOS for moderate mass
neutron stars. This class of observations can then be treated as a set of constraints on a
3-dimensional parameter space. Similarly, because maximum-mass neutron stars ordinarily
have most matter in regions with densities greater than the first dividing density, their
structure is insensitive to the first adiabatic index. The three piece parameterization does
a significantly better job above py because phase transitions above that density require a

third polytropic index I's. If the remaining three parameters can be determined by pulsar
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observations, then observations of more massive, accreting stars can constrain I's.

The best fit parameter values of the candidate EOSs are shown in Fig. 4] and listed in
Table[8|of Appendix[A] The worst fits of the fixed region fit are the hybrid quark EOSs ALF1
and ALF2, and the hyperon-incorporating EOS BGN1H1. For BGN1H]1, the relatively large
residual is due to the fact that the best fit dividing densities of BGN1H1 differ strongly
from the average best dividing densities. Although BGN1H1 is well fit by three pieces with
floating densities, the reduction to a four-parameter fit limits the resolution of EOSs with
such structure. The hybrid quark EOSs, however, have more complex structure that is
difficult to resolve accurately with a small number of polytropic pieces. Still, the best-fit
polytrope EOS is able to reproduce the neutron star properties predicted by the hybrid
quark EOS.
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Figure 4 : parametrized EOS fits to the set of 34 candidate EOS tables. There are 17 EOSs with only
ordinary nuclear matter (n,p,e,); 9 have only hyperons in addition to ordinary matter; 3 include meson
condensates plus ordinary matter; 5 include quarks plus other matter (PCL2 also has hyperons). I's < 3.5
and I's < 2.5 for all EOSs with hyperons, meson condensates, and/or quark cores. The shaded region

corresponds to incompatible values of p; and I'1, as discussed in the text.

In Appendix [A] Table [§] compares neutron-star properties for each EOS to their val-
ues for the best-fit piecewise polytrope. The mean error and standard deviation for each

characteristic is also listed.
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2.5 Astrophysical constraints on the parameter space

Adopting a parametrized EOS allows one to phrase each observational constraint as a
restriction to a subset of the parameter space. In sections[2.5.1 we find the constraints
imposed by causality, by the maximum observed neutron-star mass and the maximum
observed neutron-star spin, and by a possible observation of gravitational redshift. We
then examine, in section constraints from the simultaneous measurement of mass
and moment of inertia and of mass and radius. We exhibit in section 2.5.6] the combined
constraint imposed by causality, maximum observed mass, and a future moment-of-inertia
measurement of a star with known mass.

In exhibiting the constraints, we show a region of the 4-dimensional parameter space
large enough to encompass the 34 candidate EOSs considered above. The graphs in Fig.
display the ranges 1033'5dyne/cm2 <p1 < 1035'5dyne/cm2, 14 <T'1 <5.0,1.0<Ty <5.0,
and 1.0 < TI's < 5.0. Also shown is the location in parameter space of the best fit to each
candidate EOS. The shaded region in the left graph corresponds to incompatible values of
p1 and I'; mentioned in Sect. [2.4]

To find the constraints on the parametrized EOS imposed by the maximum observed
mass and spin, one finds the maximum mass and spin of stable neutron stars based on
the EOS associated with each point of parameter space. A subtlety in determining these
maximum values arises from a break in the sequence of stable equilibria—an island of
unstable configurations—for some EOSs. The unstable island is typically associated with
phase transitions in a way we now describe.

Spherical Newtonian stars described by EOSs of the form p = p(p) are unstable when
an average value I of the adiabatic index falls below 4/3. The stronger-than-Newtonian
gravity of relativistic stars means that instability sets in for larger values of I, and it is
ordinarily this increasing strength of gravity that sets an upper limit on neutron-star mass.
EOSs with phase transitions, however, temporarily soften above the critical density and
then stiffen again at higher densities. As a result, configurations whose inner core has
density just above the critical density can be unstable, while configurations with greater
central density can again be stable. Models with this behavior are considered, for example,
by Glendenning and Kettner [36], Bejger et al. [14] and by Zdunik et al. [I3] (these latter
authors, in fact, use piecewise polytropic EOSs to model phase transitions).

For our parametrized EOS, instability islands of this kind can occur for T's < 2, when
I't 2 2and I's 2 2. A slice of the four-dimensional parameter space with constant I'y and

I'5 is displayed in Fig. [5l The shaded region corresponds to EOSs with islands of instability.
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Contours are also shown for which the maximum mass for each EOS has the constant value
1.7M¢, (lower contour) and 2.0Mg (upper contour).

An instability point along a sequence of stellar models with constant angular momentum
occurs when the mass is maximum. On a mass-radius curve, stability is lost in the direction
for which the curve turns counterclockwise about the maximum mass, regained when it turns
clockwise. In the right graph of Fig. 5| mass-radius curves are plotted for six EOSs, labeled
A-F, associated with six correspondingly labeled EOSs in the left figure. The sequences
associated with EOSs B, C and E have two maximum masses (marked by black dots in
the lower figure) separated by a minimum mass. As one moves along the sequence from
larger to smaller radius — from lower to higher density, stability is temporarily lost at the
first maximum mass, regained at the minimum mass, and permanently lost at the second
maximum mass.

It is clear from each graph in Fig. [5| that either of the two local maxima of mass can be
the global maximum. On the lower boundary (containing EOSs A and D), the lower density
maximum mass first appears, but the upper-density maximum remains the global maximum
in a neighborhood of the boundary. Above the upper boundary (containing EOS F), the

higher-density maximum has disappeared, and near the upper boundary the lower-density

maximum is the global maximum.
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Figure 5 : The region in parameter space where two stable neutron-star sequences can occur is shaded in
the left figure. Contours of constant maximum mass are also shown. The higher central density maximum
mass contour is solid while the lower central density maximum mass contour is dashed. Mass-radius curves

are plotted for several EOSs in the right figure. Although difficult to see, EOS C does in fact have a second
stable sequence.
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2.5.1 Causality

For an EOS to be considered physically reasonable, the adiabatic speed of sound vs cannot
exceed the speed of light. An EOS is ruled out by causality if vs > 1 for any density below
the central density pmax of the maximum-mass neutron star for that EOS. (If v > 1 only
above pmax, the EOS is astrophysically indistinguishable from one altered to have vy < 1
above pmax and thus should not be ruled out.)

We exhibit the causality constraint in two ways, first by simply requiring that each
piecewise polytrope be causal at all densities and then by requiring only that it be causal
below pmax. The first, unphysically strong, constraint, shown in Fig. [0 is useful for an
intuitive understanding of the constraint: The speed of sound is a measure of the stiffness
of the EOS, and requiring causality eliminates the largest values of I'; and p;.

Fig. [ shows the result of restricting the constraint to densities below pmax, with the
speed of sound given by Eq. . A second surface is shown to account for the inaccuracy
with which a piecewise polytropic approximation to an EOS represents the speed of sound.
In all but one case (BGN1H1) the fits to the candidate EOSs overpredict the maximum speed
of sound, but none of the fits to the candidate EOSs mispredict whether the candidate EOS
is causal or acausal by more than 11% (fractional difference between fit and candidate).
We adopt as a suitable causality constraint a restriction to a region bounded by the surface
Us,max = l4+mean+1lo = 1.12, corresponding to the mean plus one standard deviation in
the error between vs max for the candidate and best fit EOSs.

In the lower parts of each graph in Fig. @ where p; < 10% dyne/cm?, the bounding
surface has the character of the first causality constraint, with the restriction on each of
the three variables p;,I's and I's becoming more stringent as the other parameters increase,
and with I's restricted to be less than about 3. In this low-pressure part of each graph, the
surface is almost completely independent of the value of I';: Because the constraint takes
the form T'1p/(e + p) < ¢ (for p < €) and p < p1 is so low, the constraint rules out values
of I'1 only at or beyond the maximum I'; we consider.

In the upper part of each graph, where p; > 103 dyne/cm?, unexpected features arise
from the fact that we impose the causality constraint only below the maximum density of
stable neutron stars — below the central density of the maximum-mass star.

The most striking feature is the way the constraint surface turns over in the upper part
of the top graph, where p; > 103° dyne/cm?, in a way that allows arbitrarily large values of
p1. This occurs because, when p; is large, the density of the maximum-mass star is small,
and a violation of causality typically requires high density. That is, when the density is
low, the ratio p/(e + p) in Eq. is small. As a result, in the left graph, vs remains too
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small to violate causality before the maximum density is reached. In the right graph, with
I'y = 3.8, I'1 is now large enough in Eq. that the EOS becomes acausal just below the
transition to I's. This is the same effect that places the upper limit on p; seen in the second
graph of Fig. [6]

A second feature of the upper parts of each graph is the exact independence of the
bounding surface on I's. The reason is simply that in this part of the parameter space the
central density of the maximum mass star is below ps, implying that no stable neutron stars
see I's.

Finally, we note that in both graphs, for small 'y (the right of the graph), the EOSs
yield the sequences mentioned above, in which an island of instability separates two stable
sequences, each ending at a local maximum of the mass. Requiring vs max to satisfy causality

for both stable regions rules out EOSs below the lower part of the bifurcated surface.
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Figure 6 : Causality constraints are shown for two values of I'y. For each EOS in the parameter space the
maximum speed of sound over all densities is used. The shaded surface separates the EOS parameter space
into a region behind the surface allowed by causality (labeled vsmax < 1) and a region in which corresponding

EOSs violate causality at any density (labeled vs max > 1).

2.5.2 Maximum Mass

A stringent observational constraint on the EOS parameter space is set by the largest
observed neutron-star mass. Unfortunately, the highest claimed masses are also subject
to the highest uncertainties and systematic errors. The most reliable measurements come
from observations of radio pulsars in binaries with neutron star companions. The masses
with tightest error bars (about 0.01 Mg) cluster about 1.4 Mg [37]. Recent observations

of millisecond pulsars in globular clusters with non-neutron star companions have yielded
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log (py in dyne/cmz)

Figure 7 : Causality constraint as in Fig. []] However, here, only the maximum speed of sound up to
the central density of the maximum mass star is considered. A second, outlined surface shows a weaker
constraint to accommodate the expected error in the speed of sound associated with a piecewise polytropic
approximation to an EOS. With o the standard deviation in vsmax between an EOS and its parametrized
representation, as measured by the collection of candidate EOSs, the outlined surface depicts vsmax =

1+mean+1c = 1.12 constraint.

higher masses: Ter 5I and Ter 5J [38], M5B [39], PSR J1903+4-0327 [40], and PSR J0437-
4715 [41] all have 95% confidence limits of about 1.7 Mg, and the corresponding limit for
NGC 6440B [42] is about 2.3 Ms. However these systems are more prone to systematic
errors: The pulsar mass is obtained by assuming that the periastron advance of the orbit is
due to general relativity. Periastron advance can also arise from rotational deformation of
the companion, which is negligible for a neutron star but could be much greater for pulsars
which have white dwarf or main sequence star companions. Also the mass measurement
is affected by inclination angle, which is known only for the very nearby PSR, J0437-4715.
And with the accumulation of observations of these eccentric binary systems (now about
a dozen) it becomes more likely that the anomalously high figure for NGC 6440B is a
statistical fluke. Recently, however, a secure measurement was made of a 1.97 4+ 0.04 M
neutron star from the Shapiro delay [43]. Fig. [8| shows the constraint on the EOS placed
by the existence of 1.93 My neutron stars, which we regard as secure. Also shown in the
figure are the surfaces associated with maximum masses of 1.7 Mg and 2.3 M.

Since all of the candidate high-mass pulsars are spinning slowly enough that the ro-
tational contribution to their structure is negligible, the constraint associated with their
observed masses can be obtained by computing the maximum mass of nonrotating neutron
stars. Corresponding to each point in the parameter space is a sequence of neutron stars
based on the associated parametrized EOS; and a point of parameter space is ruled out

if the corresponding sequence has maximum mass below the largest observed mass. We
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exhibit here the division of parameter space into regions allowed and forbidden by given
values of the largest observed mass.

We plot contours of constant maximum mass in Fig.[8] Because EOSs below a maximum
mass contour produce stars with lower maximum masses, the parameter space below these
surfaces is ruled out. The error in the maximum mass between the candidate and best fit
piecewise polytropic EOSs is |mean| + 1o = 1.7% (the magnitude of the mean error plus
one standard deviation in the error over the 34 candidate EOSs), so the parameters that
best fit the true EOS are unlikely to be below this surface.

The surfaces of Fig. |8 have minimal dependence on I'y, indicating that the maximum
mass is determined primarily by features of the EOS above p;. In Fig. [§| we have set I'; to
the least constraining value in the range we consider — to the value that gives the largest
maximum mass at each point in {p1,I'2,I's} space. Varying I'; causes the contours to
shift up, constraining the parameter space further, by a maximum of 10°2 dyne/cm?. The
dependence of the contour on I'7 is most significant for large values of p; where the average

density of a star is lower. The dependence on I'; decreases significantly as p; decreases.

Figure 8 : The above surfaces represent the set of parameters that result in a constant maximum mass. An
observation of a massive neutron star constrains the equation of state to lie above the corresponding surface.
T'; is set to the least constraining value at each point. The lower shaded surface represents Mmax = 1.7 Mp;

the middle and upper (outlined) surfaces represent Mmax = 1.93 Mo and Mmax = 2.3 Mg respectively.

As discussed above, some of the EOSs produce sequences of spherical neutron stars with
an island of instability separating two stable sequences, each with a local maximum of the
mass. As shown in Fig. [5| this causes a contour in parameter space of constant maximum
mass to split into two surfaces, one surface of parameters which has this maximum mass at

the lower p. local maximum and another surface of parameters which has this maximum
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mass at higher p. branches. Since such EOSs allow stable models up to the largest of their
local maxima, we use the least constraining surface (representing the global maximum mass)

when ruling out points in parameter space.

2.5.3 Gravitational redshift

We turn next to the constraint set by an observed redshift of spectral lines from the surface
of a neutron star. We consider here only stars for which the broadening due to rotation
is negligible and restrict our discussion to spherical models. The redshift is then z =
(1 —2M/R)~Y/? — 1, and measuring it is equivalent to measuring the ratio M/R. With no
independent measurement of mass or radius, the associated constraint again restricts the
parameter space to one side of a surface, to the EOSs that allow a redshift as large as the
largest observed shiftE] For spherical models, the configuration with maximum redshift for
a given EOS is ordinarily the maximum-mass star. By increasing p1,1's or I's, one stiffens
the core, increasing the maximum mass, but also increasing the radius at fixed mass. The
outcome of the competition usually, but not always, yields increased redshift for larger
values of these three parameters; that is, the increased maximum mass dominates the effect
of increased radius at fixed mass for all but the largest values of p;.

Cottam, Paerels, and Mendez [45] claim to have observed spectral lines from EXO 0748-
676 with a gravitational redshift of z = 0.35. With three spectral lines agreeing on the
redshift, the identification of the spectral features with iron lines is better founded than
other claims involving only a single line. The identification remains in doubt, however,
because the claimed lines have not been seen in subsequent bursts [46], and the subsequent
observation of a 552 Hz period makes it unlikely that the observed lines originated at the
NS surface [47]. There is also a claim of a simultaneous mass-radius measurement of this
system using Eddington-limited photospheric expansion x-ray bursts [48] which would rule
out many EOSs. This claim is controversial, because the 95% confidence interval is too
wide to rule out much of the parameter space, and we believe the potential for systematic
error is understated. However, the gravitational redshift is consistent with the earlier claim
of 0.35. Thus we treat z = 0.35 as a tentative constraint. We also exhibit the constraint
that would be associated with a measurement of z = 0.45.

Our parameterization can reproduce the maximum redshift of tabulated EOSs to 3.2%

(mean+10). Figure [9] displays surfaces of constant redshift z = 0.35 and z = 0.45 for the

30ne could also imagine a measured redshift small enough to rule out a class of EOSs. The minimum
redshift for each EOS, however, occurs for a star whose central density is below nuclear density. Its value,

2z~ 5 x 107, thus depends only on the EOS below nuclear density. (See, for example Haensel et al.[44].)
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least constraining value of I'y = 5 in the range we consider. Surfaces with different values of
I'; are virtually identical for p; < 10348 dyne/cm?, but diverge for higher pressures when I'y
is small (< 2.5). In the displayed parameter space, points in front of the z = 0.35 surface,
corresponding to stiffer EOSs in the inner core, are allowed by the potential z = 0.35
measurement. From the location of the z = 0.35 and z = 0.45 surfaces, it is clear that,
without an upper limit on I'; < 2.5, an observed redshift significantly higher than 0.35 is

needed to constrain the parameter space. In particular, most of the parameter space ruled

out by z = 0.35 is already ruled out by the Mp,x = 1.93 Mg constraint displayed in Fig.

w  w
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Figure 9 : Surfaces in the EOS parameter space for which the maximum redshift of stable spherical neutron
stars has the values 0.35 (shaded surface) and 0.45 (outlined surface). A measured redshift from the surface
of a neutron star would exclude the region of parameter space behind the corresponding surface. I'; is fixed

at 5.0, the least constraining in the range we considered.

2.5.4 Maximum Spin

Observations of rapidly rotating neutron stars can also constrain the EOS. The highest
uncontroversial spin frequency is observed in pulsar Ter 5AD at 716 Hz [49]. There is a
claim of 1122 Hz inferred from oscillations in x-ray bursts from XTE J1239-285 [50], but
this is controversial because the statistical significance is relatively low, the signal could be
contaminated by the details of the burst mechanism such as fallback of burning material,
and the observation has not been repeated.

The maximum angular velocity of a uniformly rotating star occurs at the Kepler or mass-
shedding limit, Qk, with the star rotating at the speed of a satellite in circular orbit at the
equator. For a given EOS, the configuration with maximum spin is the stable configuration

with highest central density along the sequence of stars rotating at their Kepler limit. An
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EOS thus maximizes rotation if it maximizes the gravitational force at the equator of a
rotating star — if it allows stars of large mass and small radius. To allow high mass stars,
the EOS must be stiff at high density, and for the radius of the high-mass configuration to
be small, the EOS must be softer at low density, allowing greater compression in the outer
part of the star [51, 52]. In our parameter space, a high angular velocity then restricts one
to a region with large values of I'y and I'3, and small values of p; and I'y.

As with the maximum mass, the maximum frequency is most sensitive to the parameter
p1, but the frequency constraint complements the maximum mass constraint by placing an
upper limit on p; over the parameter space, rather than a lower limit.

To calculate the maximum rotation frequencies for our parametrized EOS, we used the
open-source code rns for axisymmetric rapid rotation in the updated form rns2.0 [53]. For
a given EOS, the model with maximum spin is ordinarily close to the model with maximum
mass, but that need not be true for EOSs that yield two local mass maxima. The resulting
calculation of maximum rotation requires some care, and the method we use is described
in Appendix B of Ref. [54]. The error incurred in using the parametrized EOS instead of a
particular model is 2.7% (mean+10).

Spin frequencies of 716 Hz and even the possible 1122 Hz turn out to be very weak
constraints because both are well below the Kepler frequencies of most EOSs. Thus we plot
surfaces of parameters giving maximum rotation frequencies of 716 Hz in Fig.[10jand 1300 Hz
and 1500 Hz in Fig. The region of parameter space above the maximum observed spin
surface is excluded. In the top figure, maximum mass stars have central densities below po
so there is no dependence on I's. In the bottom figure the least constraining value of I'y =5
is fixed. The surface corresponding to a rotation of 716 Hz only constrains the parameter
space that we consider (p; < 1035 dyne/cm?) if I'y < 2.5. The minimum observed rotation
rate necessary to place a firm upper limit on p; is roughly 1200 Hz for I'y = 5. The surface
fmax = 1500 Hz for 'y = 5 is also displayed in Fig. to demonstrate that much higher
rotation frequencies must be observed in order to place strong limits on the parameter space.

Because it is computationally expensive to use rns to evaluate the maximum rotation
frequency for a wide range of values in a 4-parameter space, one can also use an empirical
formula. Haensel and Zdunik [55] found that the maximum stable rotation for a given EOS
can be found from the maximum-mass spherically symmetric model for that EOS with mass
M and radius Ry :

3
2

1
Qmax MS § RS B
~ . 2.10
<1O4s_1> ﬁ(M@> <10km) (2.10)

In other words the maximum rotation is proportional to the square root of the average
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Figure 10 : The above surface represents the set of parameters that result in a maximum spin frequency of

716 Hz for the top surface. For high values of p; there is no dependence on I's. The wedge at the back right

is the shaded region of Fig. 4] corresponding to incompatible values of p; and I'y.
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Figure 11 : The above surfaces represent the set of parameters that result in a maximum spin frequency of

1200 Hz for the top surface and 1500 Hz for the bottom surface. That is, observations of such high spin

frequencies would constrain the EOS to lie below the corresponding surface. For these surfaces I'y = 5, the

least constraining value.

density of the star.

The original calculation of Haensel and Zdunik gave k = 0.77. An overview of subsequent

calculations is given by Haensel et al. in [56], reporting values of k = 0.76 — 0.79 for a

range of EOS sets and calculation methods including those of [57, 58, 59]. If we calculate

maximum rotations with rns as described above, using the 34 tabulated EOSs, we find

Kk = 0.786 + 0.030. The corresponding best fit parametrized EOSs give k = 0.779 4+ 0.027.
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2.5.5 Moment of inertia or radius of a neutron star of known mass

The moment of inertia of the more massive component, pulsar A, in the double pulsar
PSR J0737-3039 may be determined to an accuracy of 10% within the next few years [18]
by measuring the advance of the system’s periastron, and implications for candidate EOSs
have been examined in [19] 18, [60]. As noted earlier, by finding both mass and moment of
inertia of the same star one imposes a significantly stronger constraint on the EOS parameter
space than the constraints associated with measurements of mass or spin alone: The latter
restrict the EOS to the region of parameter space lying on one side of a surface, the region
associated with the inequality Mpax(p1,1) > Mobserved O With Qmax(p1, 1) > Qobserved-
The simultaneous measurement, on the other hand, restricts the EOS to a single surface.
That is, in an n-dimensional parameter space, the full n-dimensional set of EOSs which allow
a 1.338 My model, and those EOSs for which that model has moment of inertia I pserved
form the (n—1)-dimensional surface in parameter space given by I(p1,I';, M = 1.338Mg) =
Iopserved- (We use here the fact that the 44 Hz spin frequency of pulsar A is slow enough
that the moment of inertia is nearly that of the spherical star.) Moreover, for almost all
EOSs in the parameter space, the central density of a 1.338 M, star is below the transition
density po. Thus the surfaces of constant moment of inertia have negligible dependence on
I'3, the adiabatic index above pg, and the EOS is restricted to the two-dimensional surface
in the p1-I'1-T'y space given by I(p1,T'1, Ty, M = 1.338M¢) = Iobserved-

This difference in dimensionality means that, in principle, the simultaneous equali-
ties that give the constraint from observing two features of the same star are dramati-
cally stronger than the inequalities associated with measurements of mass or spin alone.
In practice, however, the two-dimensional constraint surface is thickened by the error
of the measurement. The additional thickness associated with the error with which the
parametrized EOS can reproduce the moment of inertia of the true EOS is smaller, because
the parametrized EOS reproduces the moment of inertia of the 34 candidate EOSs to within
2.8% (|mean| + 10).

In Fig. [12] we plot surfaces of constant moment of inertia that span the range associated
with the collection of candidate EOSs. The lower shaded surface represents I = 1.0 x
10* gecm?. This surface has very little dependence on I'y because it represents a more
compact star, and thus for a fixed mass, most of the mass is in a denser state p > p;. The
structures of these stars do depend on I's, and the corresponding dependence of I on I's
is shown by the separation between the surfaces in Fig. The middle outlined surface

0% gcm?, and is almost a surface of constant p;. The top outlined

045

represents [ = 1.5 x 1

surface represents I = 2.0 x 1 gcm?. This surface has little dependence on I's, because
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a star with an EOS on this surface would be less compact and thus most of its mass would

be in a lower density state p < p;.

log (p; in dyne/cm?)

Figure 12 : The above surfaces represent the set of parameters that result in a star with a mass of 1.338 Mg
and a fixed moment of inertia, i.e. possible near-future measurements of PSR J0737-3039A. I = 1.0 x
10*® gem? for the shaded surfaces, whose separation corresponds to varying I's. I = 1.5 x 10%*® gcem? for
the middle outlined surface. I = 2.0 x 10%*® gcm? for the top outlined surface. The wedge at the back right
is the shaded region of Fig. 4l corresponding to incompatible values of p; and I';.

If the mass of a neutron star is already known, a measurement of the radius constrains the
EOS to a surface of constant mass and radius, R(p1,1;) = Robserveds M (p1, 1) = Mobserved
in the 4-dimensional parameter space. The thickness of the surface is dominated by the
uncertainty in the radius and mass measurements, since our parameterization produces
the same radius as the candidate EOSs to within 1.7% (|mean| + 1o). We plot in Fig.
surfaces of constant radius for a 1.4 My star that span the range of radii associated with the
collection of candidate EOSs. As with the moment of inertia, the radius depends negligibly
on I's as long as the radius is greater than 11 km. For smaller radii, the variation with I's
is shown by the separation between the surfaces in Fig.

Very recently analyses of time-resolved spectroscopic data during thermonuclear bursts
from two neutron stars in low-mass x-ray binaries were combined with distance estimates
to yield M = 1.4 Mg and R =11 km or M = 1.7 Mg and R = 9 km for EXO 1745-248 [61]
and M = 1.8 Mg and R = 10 km for 4U 1608-52 [62], both with error bars of about 1 km in
R. These results are more model dependent than the eventual measurement of the moment
of inertia of PSR J0737-6069A, but the accuracy of the measurement of I remains to be

seen.
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Figure 13 : The above surfaces represent the set of parameters that result in a star with a mass of 1.4 Mg and
a fixed radius. R = 9 km for the shaded surfaces, whose separation corresponds to varying I's. R = 12 km
for the middle outlined surface. R = 16 km for the top outlined surface. The wedge at the back right is the

shaded region of Fig. [ corresponding to incompatible values of p; and I'y.

2.5.6 Combining constraints

The simultaneous constraints imposed by causality, a maximum observed mass of 1.93M),
and a future measurement of the moment of inertia of PSR J0737-3039A, restrict the pa-
rameter space to the intersection of the allowed regions of Figs. [7], [8] and We show in
Fig. the projection of the joint constraint from causality and maximum observed mass
on the p; —I's — '3 subspace, and we show in Fig.[15|the joint constraint from including the
moment of inertia of PSR J0737-3039A as well. This allows one to see the cutoffs imposed
by causality that eliminate large values of I'y and I's and (in the left of Fig. the cutoffs
imposed by the existence of a 1.93Mg model that eliminates small values of I'y and T's.

We noted above that measuring the moment of inertia of a 1.338M(, star restricts the
EOS at densities below ps to a two-dimensional surface in the p; —I'y — 'y space. In the full
4-dimensional parameter space, the corresponding surfaces of constant M and I of Fig.
are then three dimensional and independent of I's. Their projections onto the p; — I'o — '
subspace are again three-dimensional and independent of I's, their thickness due to the
unseen dependence of the mass and moment of inertia on I';. For small moments of inertia
there is negligible dependence on I'y so the allowed volume in Fig. [15|is thin. The thickness
of the allowed volume increases as the moment of inertia increases because the dependence
on I'; also increases.

In Fig. [16| we explore a relation between the moment of inertia 7(1.338) of PSR J0737-
3039A and the maximum neutron star mass, in spite of the fact that the maximum mass is

significantly greater than 1.338 M. For three values of the moment of inertia that span the
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Figure 14 : The figure portrays the joint constraint imposed by causality (vsmax < l+mean+1o) and the
existence of a 1.93 Mg neutron star. The dark shaded region is the volume in I'y — I's — p1 space ruled
out by the requirement that the EOS be causal, and the light shaded region is the volume ruled out by the
1.93 My neutron star.

log (p1) [dyne/cm‘)

Figure 15 : The figure portrays the joint constraint imposed by causality (vsmax < l4+mean+1o), the
existence of a 1.93 Mg neutron star, and by a future measurement of the moment of inertia I of JO737-
3039A. Each thick shaded surface is the volume in I'y — I's — p1 space allowed by the joint constraint for the
labeled value of I.

full range associated with our collection of candidate EOSs, we show joint constraints on I'y
and I'3 including causality and maximum neutron star mass. For I(1.338) = 1.0x10* gcm?,
I'y is nearly unconstrained, while I's is required to lie in a small range between the causality
constraint and the reliable observations of stars with mass 1.7 M. However, for the recently
measured 1.93 Mg neutron star, this value for the moment of inertia is completely ruled
out. For larger values of 1(1.338), I's is more constrained and I's is less constrained.

The allowed range for p; as a function of the moment of inertia of JO737-3039A is shown
in Fig. The entire shaded range is allowed for a 1.7 Mg maximum mass. The medium

and darker shades are allowed for a 2.0 My maximum mass. Only the range with the darker
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Figure 16 : The allowed values of I'z and I's depend strongly on the moment of inertia of PSR J0737-3039A.
In top left, top right, and bottom figures, respectively, I has the values 1.0 x 10%*® gem?, I = 1.5 x 10%° gcm?
and I = 2.0 x 10%° gch. In each figure the upper curves are the vsmax = 1 (dotted) and Vs max =
l1+mean+1lo = 1.12 (solid) causality constraints. Shading indicates a range of possible maximum mass
constraints, with increasing maximum mass leading to a smaller allowed area. All shaded areas are allowed
for a 1.7 M» maximum neutron star mass. The medium and dark shades are allowed if a 2.0 My star is

confirmed. Only the darkest shade is allowed if a 2.3 My star is confirmed.

shade is allowed if a 2.3 M, star is confirmed. It should be noted that for small moments
of inertia, this plot overstates the uncertainty in the allowed parameter range. As shown in
Fig. the allowed volume in I's — I's — p; space for a small moment of inertia observation
is essentially two dimensional. If the moment of inertia is measured to be this small, then
the EOS would be better parametrized with the linear combination «log(p;) + ST's instead
of two separate parameters log(p;) and I's. We also note that the recent 1.97 + 0.04 Mg
NS observation essentially rules out values of 1(1.338) < 1.0 x 10% gcm?.

2.6 Discussion

We have shown how one can use a parametrized piecewise polytropic EOS to systematize

the study of observational constraints on the EOS of cold, high-density matter. We think
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Figure 17 : The allowed range of p; as a function of the moment of inertia of J0737-3039A when combined
with causality (vs,max = 14+mean+1c) and observed mass constraints. All shaded areas are allowed by a
1.7 Mg maximum mass. The medium and dark shades are allowed if a 2.0 Mg, star is confirmed. Only the

darkest shade is allowed if a 2.3 Mg star is confirmed.

that our choice of a 4-parameter EOS strikes an appropriate balance between the accuracy
of approximation that a larger number of parameters would provide and the number of
observational parameters that have been measured or are likely to be measured in the
next several years. The simple choice of a piecewise polytrope, with discontinuities in the
polytropic index, leads to suitable accuracy in approximating global features of a star. But
the discontinuity reduces the expected accuracy with which the parametrized EOS can
approximate the local speed of sound. One can largely overcome the problem by using a
minor modification of the parametrized EOS in which a fixed smoothing function near each
dividing density is used to join the two polytropes.

We see that high-mass neutron stars are likely to provide the strongest constraints from
a single measurement. The work dramatizes the significantly more stringent constraints
associated with measurements like this, if two (or more) physical features of the same
star can be measured, and an n-dimensional parameter space is reduced by one (or more)
dimension(s), to within the error of measurement. In particular, a moment of inertia mea-
suremement for PSR J0737-3039 (whose mass is already precisely known) could strongly
constrain the maximum neutron star mass.

Finally, we note that the constraints from observations of different neutron star popula-

tions constrain different density regions of the EOS. For moderate mass stars such as those
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found in binary pulsar systems, the EOS above py = 10' g/cm3 is unimportant. For near-
maximum mass stars, the EOS below p; = 1017 g/cm3 has little effect on neutron star

properties. This general behavior is independent of the details of our parameterization.
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Chapter 3

Point-particle waveform

approximations

The available electromagnetic observations presented in the last chapter offer useful, but still
weak, constraints on the equation of state. Claimed mass-radius measurements offer the
potential to provide significantly stronger constraints if they can be confirmed, and mass—
moment of inertia measurements will offer similar constraints if they can be measured.
Only recently, however, has the potential for gravitational-wave detectors to measure EOS-
dependent information from binary inspiral received much attention.

In this chapter we state the results of the post-Newtonian (PN) approximation to the
inspiral stage of coalescing binary black hole (BBH) systems, and discuss several methods
for obtaining time and frequency domain inspiral waveforms. A more detailed review of the
PN formalism can be found in Refs. [63] [64]. We then describe two methods for extending
the PN approximation to the merger and ringdown stages of coalescence. In the next
chapter we describe how the presence of matter in binary neutron star (BNS) and black
hole-neutron star (BHNS) systems modifies the BBH waveform via tidal interactions. First,

however, we discuss the general features of a binary waveform.

3.1 Description of a binary waveform

In general relativity, a gravitational wave far from a source is a linear perturbation h,,
of a flat background spacetime ), such that the metric is g,, = nu + hyu. The gauge

symmetry of general relativity allows one to choose the Lorenz gauge condition

0" by =0, (3.1)
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where l_lw, = hy — %nwh is the trace reversed perturbation [64]. In the Lorenz gauge, the

Einstein equation R, — % 9uv R = 87T}, becomes
Ohyw = —167T ). (3.2)

Outside the source, where the stress energy tensor 7, = 0 and therefore DEW =0, an
additional coordinate transformation that still preserves the Lorenz gauge condition can be

made such that h is transverse and traceless, and the waveform therefore satisfies [64]

hoy =0, hi=0, Oh;j=0. (3.3)

(2

In general, the transverse traceless projection hiTjT of a generic perturbation h;; is given
by hiTjT = Ajjrihr, where Ay = PPy — %Piijl is the transverse traceless projection
operator and F;; = d;; — n;n; is the standard projection operator used to project tensors
orthogonal to n’.

The four constraint equations from the Lorenz gauge condition and the additional four
equations from the transverse traceless condition reduce the 10 components of the symmetric
perturbation A, to two degrees of freedom. The waveform can therefore be written in terms

of the two polarization tensors (ey);; and (ex);;
TT
As can be seen by Eq. (3.3)), for a source centered at the origin, the 4+ and x polarization
tensors in spherical coordinates (r, ¢, ¢) are
6;-; = ZiZj — ¢i¢ja (35)
6;;- = Zi(ﬁj + Zj(b’b (3.6)
For a binary in the z—y plane, the polar angle ¢ is called the inclination angle.

The components of the waveform can be combined into the complex scalar h = hy —ihy,

which is related to the Weyl scalar Wy || by Uy = h for asymptotic values of r. This scalar

can be decomposed in terms of spin-weighted spherical harmonicsﬂ of spin s = —2
[e's) 0
h = th —ihx = Z Z 72YV€m(L7 ¢)h€m(t’r)a (37)
(=2 m=—/(

'The 10 independent components of the Weyl tensor Cy g5 can be represented in terms of 5 complex
scalars Wo—W,4. These scalars are defined by contracting the Weyl tensor with the basis vectors of a null
tetrad which can be written in terms of the spherical coordinates used here as ({ = % (t47), A= %({, 7),
m = %(i + i), m* = %(Z — i¢)). W, represents outgoing gravitational radiation and is defined by
Uy = —Clapysn®m P m*® [65].

2Under a rotation of angle 1 about the radial vector 7, the vector /m in S? transforms as 1’ = e'¥7.
A function 1 which transforms as 1’ = €*'¥n is said to have spin weight s [66]. The Weyl scalar ¥4, which

transforms as U} = — awﬁam’*ﬁmm’*‘; = e~ 2 W, where m'* = e~ ™m*, therefore has spin weight —2.
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where a general expression for Yy, and a table for the first few spin weight —2 harmonics is

given in Ref. [67]. These spin weighted spherical harmonics are orthogonal over the 2-sphere

/S Vit 8)5Y (1, 0)A2 = G0t (3.8)

where df) = d¢ sin tde, and satisfy the following completeness relation

0 l
D0 V(s 0)sYin (', ¢) = 6(6 — ¢/)d(cost — cos ). (3.9)
{=|s| m=—4
From these relations we see that a generic gravitational waveform, can be decomposed into

harmonics with

binltr) = [ h(t.7,1.6) Vi )2 (310)

and we also note that hy,, = (—1)£hzim.
For circular orbits in the low-velocity, weak-field approximation, the only nonzero modes

are the hg 42 modes with corresponding spin weighted spherical harmonics

5 .
—2Yo 40 = @(1 + cos 1)2et 9, (3.11)

Assuming the observer is in the x—z plane, ¢ = dﬂ and the waveform is given by

h="ho_9 2Ys _o+hoo 2Yoo (3.12)
5
=1/ @[(1 — cos L)zh;? + (1 + cost)*hg 2], (3.13)

5
641

the inspiral, higher modes will begin to contribute. However, for the circular non-precessing

and in the special case of an optimally oriented binary (: = 0), h = 4 hao. Later in
orbits that we will consider in this dissertation, the higher modes are usually significantly
smaller than the ¢ = |m| = 2 modes, and we will therefore focus mainly on this mode for

the remainder of the dissertation. Future work will need to incorporate these higher modes.

3.2 Post-Newtonian approximation

The post-Newtonian formalism re-expresses the general relativistic description of a system
of particles, given in terms of the Einstein field equations and geodesic equation, into the

standard equations of motion of Newtonian physics, given in terms of the acceleration of

3As we will see, the waveform of a binary has an overall phase constant, and this condition is equivalent

to redefining the phase constant.
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particles through flat Euclidean space. Although far more involved than what is presented
here, the equations of motion are found by systematically expanding the metric and the
Einstein field equations in powers of the dimensionless parameter ¢ ~ \/GTM ~ v/e,
where M is the total mass of the system, d is the scale of the system, and v is the character-
istic velocity of particles in the system. The metric is then solved iteratively in powers of e,
and the equations of motion are evaluated from the metric using the geodesic equationE] An

expansion containing terms up to " or equivalently (1/c)" is denoted an §PN expansion.

3.2.1 Energy and luminosity

The equations of motion that result from this expansion will have terms containing even
powers of 1/c¢ and terms containing odd powers of 1/c. The terms with even powers of 1/¢
are time reversal invariant, and therefore admit a Lagrangian with an associated conserved
energy. For a binary system of total mass M = Mj + M> in circular orbit with angular

velocity €2, the energy in terms of the gauge independent quantity
z = (MQ)?3, (3.14)
is given to 3.5PN order by [63] [64]
1 3 27 19n  *\ ,
E=——M 1 —— — = -t — - =
2 772;{Jr<4 12>x+< s TR )"

[675 (34445 2057r2> 15502 35773] 3}
pe— ;U s

64 576 96 96 5184

(3.15)

where n = MMy /M? is the symmetric mass ratio.

Terms with odd powers of 1/c in the equations of motion, which begin at 2.5PN (1/¢%)
order, on the other hand, determine the radiation reaction and are associated with the
gravitational-radiation luminosity £. For an expansion up to the currently known 3.5PN
order, only the 2.5 and 3.5PN terms contribute to the luminosity, and this means that the
expression for £ is only known explicitly to 1PN beyond the leading order. To obtain the
luminosity to the same PN order as the energy, we must apply a different method. Although
only known to be true to 1PN order, we can reasonably assume that the energy balance
equation

dE
— = 1
: L (3.16)

4See, for example, Ref. [63] for a review of the post-Newtonian expansion, and Ref. [67] for an explicit

derivation of the 1PN equations of motion and waveform.
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holds at each PN order [63]. Far from the source, where the gravitational perturbation is

linear, the luminosity can be calculated from

2

r . .
£= g [ aOGETHED, @1

We now need to find the waveform in terms of the source. Ignoring significant details in the
derivation, which are outlined more thoroughly in Refs. [63] [64], the waveform hZTjT can be
matched to the post-Newtonian metric by performing a multipole decomposition of both
the waveform and PN metric in a shell with inner radius outside the source and outer radius
much less than a wavelength from the source. The metric will contain contributions from
the instantaneous mass and current multipoles as well as contributions from hereditary tail
terms that depend on the past history of the multipoles and result in logarithmic terms.

The final result for the luminosity sourced by a binary system in circular orbit is [63] [64]

2 124 44711 271 2
£—3n2x5{1—|—<—7—3577>x+47rx3/2+<— 7 +9777+6577>m2

5 336 12 9072 504 18
191 4 19 1672 1712
8191 583y w252 4 66437395 9+ 67°  1712vg —@m(mx)
672 24 69854400 3 105 105 (3.18)
134543 N 4172 94403n% 775037 4 ‘
- — - T
7776 48 3024 324
16285 2147451 19338572 7/2
+< 504 T 1TR 3024 )7 [

where vg ~ 0.5772 is Euler’s constant. The dominant mode of the waveform, decomposed

into spin weighted spherical harmonics, is [68] 69

TMY i 107 55 3/2
h22 8\/;D (& l‘{ +< 42 + 19 T+ 2nx

2173 1 204772 1 4
+< 73 10697 N 0477 >x2+ {_ 07 I (3”_24¢> TI] 2%/?

1512 216 1512 21 21

, _ (3.19)
[27027409 8567p 2% | 428im 428

sl T
646300 105 3 105 105 m(167)

417% 278185\  20261n°  1146357° 3
96 33264 2772 99792 ’
where ¢ is the phase of the binary orbit. Although not needed for this dissertation, higher

order modes are listed in Refs. [68] [69].

3.2.2 Orbital phase of the binary

From the energy balance equation we can find the phase ¢ of the orbit by performing a

change of variable
_dE _ dE /dx
dt —  dt/dz’

L= (3.20)
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2/3
Since z = (M %) , the phase is found by integrating the following two equations

dx L

dt ~ dE/dz’ (3:21)
do 73/2

There are several methods to integrate this system of equations, the four most common of
which are labeled TaylorT1-TaylorT4 [67]. In the TaylorT1 method, Eqgs. and
are simply plugged into Eq. , and the system is then integrated numerically starting
with the initial conditions z¢ = (M 90)2/ 3 and ¢g. In the TaylorT2 approach, the equations

are written

O df(/x Cf;U/ da’, (3.23)
$(x) = de + % / s df({jf' da’ (3.24)

The integrands are reexpanded and truncated at the appropriate PN order, then integrated
to give analytical series solutions for ¢(x) and ¢(x). The TaylorT3 method starts with
the TaylorT2 result, then inverts the series to obtain x and ¢ as explicit functions of the
auxiliary variable ©(t) = =17 (t. —t). To do this, the series solution to t(z) is inverted to
obtain a series solution for z(©(t)). This solution is then plugged into the series solution for
¢(x) and reexpanded to give ¢(O(t)). Finally, in the TaylorT4 method, which appears to
agree best with equal mass BBH simulations at 3.5PN order [70], the right side of Eq.

is reexpanded in a Taylor series and then truncated at 3.5PN order [71]:

d 4 nx® 4 11 41 13661 2
x—ﬁnx{1+< 73 n>x+47rx3/2+<3 03 366”+59”>x2

dat 5 M 336 4 18144 © 2016 18

41 1 164473222 1712 1672

4159 189p e 6447322263  1712yg 167 —@111(1695)

672 8 139708800 105 3 105 (3.25)

45172 56198689 541n%  5605m3] ‘

— — x

48 217728 ) 1T T896 2592
2

_4415+358675n 914957 el

4032 6048 1512

Eqgs. and are then integrated numerically as in the TaylorT1 approach. The

waveform can now be evaluated by plugging the solutions for z(¢) and ¢(t) into the waveform

ha2 (Eq. [3.19).
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3.2.3 Stationary phase approximation

As we shall see in later chapters, we will often need the Fourier transform of a waveform.
For a generic waveform

B (£) = Agp (£)e™ ™90 dt. (3.26)

the Fourier transform is given by
)
Fom(f) = / Apm (0620 i, (3.27)
—o0
where ®(t) = 2w ft — m¢(t). The Fourier transform can be evaluated numerically; how-
ever, when the amplitude and frequency are slowly varying with time (dln A/dt < d¢/dt
and d?¢/dt? < (d¢/dt)?), it is possible to use the stationary phase approximation (SPA).
When the SPA conditions hold, the main contribution to the integral comes from the re-
gion centered on the stationary phase time ts, when the integrand is not changing with
time [®(tsp) = 27f — m(typ) = 0], while far from the stationary point the integrand is
rapidly oscillating and contributes little to the integral. Around this point the phase can

be approximated with a Taylor series

l'm(ﬁ(tsp)(t — top)?. (3.28)

O(t) = 27 ftyp — mo(tsp) — 51

The Fourier transform now becomes

~ 27'(' .
hem(f) = A (tsp) | ———e¥Vem(F),
em(f) = A p),/mé(tsp)e (3.29)

7r
wém(f) = 27Tftsp - m¢(tSp) - Z?

where [ exp[—ia(t—tsp)?] dt = \/7/aexp(—im/4). The quantities tp, ¢(tsp), and Ay, (tsp)
can be written as functions of f using z(ts,) = (M@(tsp))?® = (2 M f/m)?/3, and as with
time domain post-Newtonian waveforms there are several ways to do this. The most com-

mon version known as TaylorF2 closely follows the time domain TaylorT2 approach. The

time and phase are written as parametric functions of z

Te  dE/dx
te = tc+/ dz, 3.30
P a(ty) L(T) (3.30)
typ) = ot — RO b, 31
¢(tsp) bet M/x(tsp)x L) (3:31)

and as in the TaylorT2 approach the ratios in the integral are reexpanded then truncated

at the appropriate PN order. The term in the square root of Eq. (3.29) can be written

using é(tsp) = ﬁxlm(tsp)%, and ‘fl—f can be rewritten with the TaylorT1 method, the
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TaylorT4 method , or the entire amplitude term can be reexpanded then truncated.
The method that gives the best agreement with the Fourier transform of BBH simulations
during the late inspiral is the TaylorT4 method [72]. The TaylorF2 waveform (with TaylorT4
amplitude) is then

= 4 M i
hﬁm(f) = Aﬁm(l:(tsp)) da(ten) e ¢Zm(f), (332)
3mat/2(ts,) g -
T m [ dE/dx
Ve (f :27rftc—m¢c—+/ 232 (tg,) — 23/ dx. 3.33

The ¢ = m = 2 harmonic is, for example,

T 3 3715 55
Voo (f) = 27 fte — 2¢c — i %(wa)“”/?’ {1 - (756 - 977) (wM f)?/3 — 167 (x M f)

(15293365 27145 308572

4/3
508032 | 504 72 >7T(”Mf )

+ [+ In(wMA)] (z’fgg‘r’ _ 63“) (M )3

115832312 1 4072 4 4
583231236531  6407> 6848y 68 81n(647TMf)
4694215680 3 21 3

15737765635 N 225572 7605512 B 12782573

3048192 12 1728 1296

1 4045n?
(77096675 378515 740451 )W(WMfy/g}

| aty

254016 1512 756
(3.34)

3.3 Frequency-domain phenomenological waveforms

During the late inspiral, the assumptions of slow motion (v < ¢) and weak gravitational
field (% < 1) used in the post-Newtonian formalism no longer hold, and new methods
are needed for constructing the waveform. Several methods have been developed to join
the post-Newtonian formalism during the inspiral to the results of numerical relativity and
perturbation theory during the merger and ringdown stages. In this section we will discuss a
frequency-domain phenomenological model which joins numerical waveforms for the merger
and ringdown of BBH systems to the stationary phase approximation PN waveform and then
constructs an analytic fit to this hybridized waveform. This phenomenological waveform
will be used as a starting point for constructing an analytic inspiral-merger-ringdown (IMR)
BHNS waveform in Chapter[8 In the next section we will discuss another approach, known
as the effective one body (EOB) formalism, for extending the post-Newtonian results to the

late inspiral and merger. The EOB formalism will be used in Chapter
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Several frequency domain phenomenological models are now available for the complete
IMR BBH waveform. These models include the PhenomA [73] model for nonspinning BBH
systems, as well as the PhenomB [74] model and improved PhenomC [72] model for aligned-
spin BBH systems. Below, we will discuss the PhenomC waveform, which is fit to a wide
range of BBH simulations and places an emphasis on controlling errors due to matching the
numerical to the PN waveform.

In the models PhenomA—C, the Fourier transform of the waveform is decomposed into

an amplitude Appen(f) and phase @phen(f) as

}Nlphen(f) = Aphen(f)ei(bphen(f)- (335)

The inspiral is described by the TaylorF2 post-Newtonian waveform with the amplitude
given by \ﬁgg( f)| as in Eq. 1} and the phase given by 192(f) as in Eq. 1) For

aligned-spin waveforms, the spin of both black holes is parametrized by the single parameter

M, Mo

=1 -2 3.36
X=Xt e (3.36)

where x4 = aa/Ma € (—1,1) is the dimensionless spin parameter for black hole A.
During the premerger stage, defined as 0.1fgrp < f < frp where frp is the mass and
spin dependent ringdown frequency of the dominant mode given explicitly in Ref. [72], the
TaylorF2 waveform will no longer be an accurate description. Instead, the amplitude can
be written in terms of the PN amplitude Apy, but with an additional phenomenological

3PN correction 7, f%/6 fit to numerical waveforms

Apni(f) = Apn(f) + 7118 (3.37)

The phenomenological phase is written in a form similar to the TaylorF2 expansion (Eq.|3.34))

1
Ba(f) = 6(041,}0_5/3 +aof TV asf TV 4+ ay 4 asfPP + agf), (3.38)

and the coefficients a1—ag correspond to phenomenological OPN, 1PN, 2PN, 2.5PN, 3.5PN,
and 4 PN corrections respectively.

During the ringdown stage (f > frp), the amplitude is written as a product of a
Lorentzian

2

<£(f, fo,0) = (f_f(S—W) and the leading f~7/¢ PN amplitude term,

Arp(f) = 81.L(f, fan(a, M), 62Q(a)) f~7/°, (3.39)
®Note that Az (z) in Eq. also has a small phase which is negligible during the inspiral and can be

ignored.
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where @ is the ringdown quality factor defined in [72], and §; and J2 are phenomenological

parameters. The phase during ringdown, which grows roughly linearly, is written

2u(f) = 81+ Baf. (3.40)

The parameters 51 and [ are determined analytically by matching the value and slope of
the premerger phase at frp.

The transitions between the inspiral, premerger, and ringdown regimes are smoothed by
means of windowing functions [72]. The 9 phenomenological parameters {1, . .., ag, V1, 01,92}
are found by maximizing the overlap with numerical waveforms. Each of the phenomeno-
logical parameters are then related to the physical parameters {7, x} by a polynomial fit

with 5 parameters each [72].

3.4 Effective one body formalism

In this section we introduce another method for extending the validity of the post-Newtonian
formalism to the late inspiral, merger, and ringdown, known as the effective one body (EOB)
formalism and first introduced in Ref. [75]. The version used here is exactly that of Ref. [70],
and is described in more detail in a review [77]. The only ingredients not listed here are
terms for the re-sumed waveform in Ref. [78] and coefficients to determine the ringdown

waveform found in Ref. [79].

3.4.1 Hamiltonian dynamics

In the EOB formalism the two-body dynamics are replaced by a test particle of reduced mass
= My Ms/M moving in a modified Schwarzschild metric of total mass M = M; + Ms. In
the expressions below, we will use dimensionless coordinates rescaled by the total mass M,
and the dynamical expressions will be rescaled by the test particle mass uﬁ The modified

Schwarzschild metric has the form

ds® = —A(r)dt* + B(r)dr? + r*(d6? + sin® §d¢?). (3.41)

5The coordinates (T, R,¢) and conjugate momenta (Pg, P,) have been rescaled to dimensionless co-
ordinates (t,7,¢) and momenta (pr,py) given by: t = T/M and r = R/M for the coordinates, and
pr = Pr/p, pp = Py/puM for the conjugate momenta. Other quantities are then rescaled in the follow-
ing way: w = MQ = Md¢/dT is the angular velocity, D= D/M is the distance to the source, H= H/u
and Heg = H.q/p are the Hamiltonian and effective Hamiltonian, and _7:'4) = Fy/p is the radiation reaction

force.
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The metric potentials A and B can be calculated from post-Newtonian theory. The first
function is
94 4172

A(u) = PE |1 — 2u+ 2nu® + (? — 3_2> nu + asnu® + agnub| (3.42)

where u = 1/r and P}'[-] denotes a Padé approximant of order m in the numerator and
n in the denominator. The 4 and 5 PN coefficients, a5 and ag, are fit to numerical BBH
waveforms. The values that give the optimal fit form a degenerate curve in the as—ag
parameter space, and the specific values chosen here are (as,ag) = (0,—20). The second
potential is rewritten as
D(r) = B(r)A(r), (3.43)
and has been calculated to 2PN order
D(u) = PY[1 — 6nu® + 2(3n — 26)nu?]. (3.44)

The motion of the EOB particle of mass p is determined by the Hamiltonian

~ 1 N
i = ;\/1 4 2n(Hor — 1), (3.45)
where
2
: Py | b} Py
Heg = | A(1/7) (1 tatgt 2n(4 — 3n)r—2 (3.46)

is the effective Hamiltonian. The equations of motion given this conservative Hamiltonian

H and a dissipative radiation-reaction force F; are

% _ gg (3.47)
% = %:w (3.48)
dg = —% + 7 (3.49)
Te - S5+ (3.50)

Here, % = 0 because the EOB Hamiltonian does not have an explicit ¢ dependence. In

addition, for circularized binary inspiral the radial component of the radiation-reaction force

F, is of higher post-Newtonian order than the tangential component, so it is set to zero.
To increase resolution near the black hole, the radial coordinate can be rewritten in

terms of a tortoise coordinate [80] defined by

dr B 1/2
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The new radial momentum is then p,, = (A/B)'/2p,. Using this definition, the effective

Hamiltonian becomes

2

. ) Dy Py,
Heg = | P2, + A(1/r) | 1+ o 2n(4 — 3n) 2 (3.52)

where the parts that are 4PN and higher are neglected. (The 4 and 5 PN terms are however
accounted for in the free parameters a5 and ag which were fit to numerical waveforms). The

equations of motion become

% _ \%% (3.53)
% = gTizw (3.54)
i, _ Aok o5
% = Ty (3.56)

3.4.2 Radiation reaction

For the radiation reaction term ]-A'¢, which is written in terms of the PN parameter z, we
will need a way to write z in terms of the dynamical variables. The usual method is to use
the Newtonion potential 1/r and velocity squared (wr)? as PN counting parameters and
then rewrite them in terms of the gauge invariant angular velocity w using the Kepler law
w?r3 = 1 which holds in the Newtonian limit, and for circular orbits, in the Schwarzschild
(n — 0) limit. The Kepler relation can be extended to circular orbits in the EOB metric

by defining a new radial parameter, r, = r)}/3, where

2

-1
V(r,p) = 5 (%) 1427 [ ] A() (1 + %‘5) ~1)]. (3.57)

for which w2rg = 1 holds for all circular orbits. In addition, for noncircular orbits (in par-
ticular for the plunge), this relation also relaxes the quasicircular condition by not requiring

that the Kepler relation hold. The specific choice of PN parameter used here is
r = (wry)? (3.58)

See Ref. [81] for an extensive discussion.
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The radiation reaction term ]:"d) used in Ref. [76] takes the form of a summation over all

multipoles
8 ¢

~ 1 ~
Fy=— 2| Dhyp, 2. 3.59
P 87”7“’@2:; mz::l(mw) | Dhp, | (3.59)

Instead of using the standard Taylor expanded version of hy,, which can be found in Ref. [69],

Ref. [78] decomposes the waveform into a product of terms

h22 = hg;vvtgeﬂngewmfgg(x) 21\;QC (360)
for £ =m =2, and
P = WY S Tyme®m pb () (3.61)

Newt

for the other values of ¢ and m. The leading Newtonian part hy,,

is given in the usual

form as a function of x

m

Newtzﬂ (t+e) /2y b—e,—m (T
h Animee eIy (5:9) (3.62)

where the coefficients ng, and cp1.(n) are defined by Egs. (5-7) of Ref. [78], and the parity
€ is 0 for £ +m even and 1 for ¢ + m odd.
The PN terms in the resummation which had been written as functions of z in Ref. [7§]

are now written in terms of the dynamical variables. The effective source term S’eff be-

comes [82]

A E[ ff(r7p oYY ) e=0
Seff(ra pr*ap¢>) = { pz T e . (363)
2 e=1
The tail term is )
D +1—2ik) 3 o4
Tgm(T, Dr. p¢) — Meﬂ'k 21kln2kr0’ (364)

T((+1)

where k = nmﬁ(r, Prvs o)W (T, Dr, s Ps), k = mw(r, pr,, py), and 1o = 2. The phase of this tail
term is corrected with a term of the form e¢?m. The first ten &g, are given in Egs. (20-29)
of Ref. [7§]. The first one is

4287

7 3/2 _5/2
— 24 3.65
105 Y ny’’=, (3.65)

022 = P

where y = (nH (r, pr, , Pg)w (T, Dr. s p¢))2/ 3 and 7, which has several possible forms, is chosen
to be § = w?/3 [82]. Finally, the remainder term of the resummation fg,, is expanded in

powers of x. For £ = m = 2 this is then re-summed with a Padé approximant

Faa(@) = P3 (""" (@), (3.66)
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where
Taylor(p 0y — 1 4 55774; 8696 N 2047n% — 1657142577 — 4288 2
<114635773 22787517  4lm?n 346257 856 21428357) 3
- - — —eulerlng(z) + ————
99792 33264 96 3696 105 727650
N (36808euler1n2 (2) - 5391582359> A

2205 198648450

<458816€uler1n2 (2) - 93684531406) 5
19845 893918025 ’

(3.67)

and the eulerln,, (z) = yg+In 2+% In x+1Inm terms are treated as constants when calculating
the Padé approximant. For the other values of ¢ and m, fs, is re-summed in the form

fom = pgm. The quantity pg,, is given in Eqs. (C1-C35) of Ref. [78]. p2; is for example

23 59 61772 109937 47009\
=1+ -2 ) - -
84 56 4704~ 14112 56448
7613184941 107
——————— — —eulerl 3 3.68
(2607897600 105 nl(m)) v (3.68)
1 (1 opin, (o) _ LOSOITATISS
5380 ! 011303737344 )

The final product in the resummation of hgg is a next-to-quasicircular (NQC) correction

term that is used to correct the dynamics and waveform amplitude during the plunge

2 ..
NQC a1p;., aar
fQQQ (al7 02) =1+ -

(3.69)

(rw)? ' rw?’

The free parameters a; and as are determined by the following conditions: (i) the time
when the orbital frequency w is a maximum (the EOB merger time ¢)s) coincides with the
time when the amplitude |hgs| is a maximum, and (ii) the value of the maximum amplitude

is equal to a fitting function that was fit to several BBH simulations, given by [76]
|h22|max(n) = 1.575n(1 — 0.131(1 — 4n)), (3.70)
and is accurate to ~1%.

3.4.3 Integrating the equations of motion

The equations of motion are solved by starting with initial conditions {rg, ¢o, pr.0, Pso} and

numerically integrating the equations of motion. In this paper we are interested in long,
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zero-eccentricity orbits. This can be achieved in the EOB framework by starting the inte-
gration with large r, where radiation reaction effects are small, and using the quasicircular
condition p,, = 0. Eq. (3.55)) then becomes

OH
— -, = 0, =0 3.71
(e, = 0,1y) (371)
and results in the condition ;
JuA(u)
pi = du V7 (3.72)

(W A(u))
for py. If this quasicircular initial condition is used for smaller r, the radiation reaction term
is no longer negligable, and this initial condition will result in eccentric orbits. If desired, one
can use an initial condition that more accurately approximates a zero eccentricity inspiral
such as post-circular or post-post-circular initial conditions with nonzero p,, [83].

To numerically solve Egs. , they must be written as a system of first order
equations. However, the term f"¢ in Eq. which is constructed from Egs. ,
contains the square of # from the NQC term fQI\;QC (Eq. [3.69). Since le\;QC gives a small
correction of order 10% during the plunge, the easiest method, and that used in Ref. [76],
is iteration [82]: (i) First solve the system of equations with f32C set to one. (i) Use the
solution of Egs. to evaluate 7 and the other quantities in fQI\;QC. (iii) Re-solve
the equations of motion with the NQC coefficients no longer set to one. (iv) Repeat steps
(ii) and (iii) until the solution converges to the desired accuracy. In practice this iteration
only needs to be done 2-5 times.

A second method is to directly rewrite Eq. as a first order equation. This can
be done by replacing # in the NQC term (Eq. , contained in the expression for F on
the right hand side of Eq. , with an expression containing pg and then solving for pg.

The equations of motion (3.53H3.56|) and the chain rule give

i 4 A0H
o dt VD Opr,

= L+ M + Npy, (3.73)
where
10 |42 (o)
L = -~ |— 74
20r | D <8pr*> (3.74)
A2 9H 02H
M = =7 .
D or op?, (375)
A O*H
N = 7= 3.76
\/ﬁapr*aqu ( )
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Plugging Eq. 1) into the expression for Fin Eq. 1} yields an equation quadratic
in pg which can be solved exactly if desired. To first order in the NQC correction term,

Eq. (3.56) now becomes the first order equation

FoHigher + F, f 2 [1 + 26(“233 +2;5(L+M )}

dpg
dpy _ , 3.77
dt 2FQ§2 T?ZN ( )
where
8 l
i igher — Dh m 2 .
Fp High 87rv7w ZZQ Z_ mw)?| Dhyp| (3.78)
(£;m)#(2,2)
includes just the higher order terms (¢,m) # (2,2), and
~QC 1 A7 QC
Fiy = ———(2w)?|Dhgy 2. (3.79)

87777w

Here, h%c = haa/ ngC is the portion of hgo that does not contain the NQC term.
The solution to the equations of motion {r(t), #(t), p, (t),ps(t)} are then plugged back

into Eqs. (3.60{3.61)) to give the waveform hig:piral(t).

3.4.4 Ringdown

In the EOB formalism the ringdown waveform of the final Kerr black hole is smoothly
matched onto the inspiral waveform at the EOB merger time tj;. The mass of the black

hole remnant is given by the energy of the EOB particle at the merger time ¢,

M = L (tar) = MAJ1 + 20(Fe(tar) — 1), (3.80)
and the Kerr parameter is given by the final angular momentum of the EOB particle [84]

aoy = Loltn) _ 1Pg(tar)
Mgy 14 2n(Heg(tar) — 1)

(3.81)

The ringdown waveform is given by the first five positive quasinormal modes (QNM)

for a black hole of mass Mgy and spin agy:
i 1< +
Ry BN (t) = = > Oy e, (3.82)

where 0;’% = 9oy, +1iwogy, is the nth complex £ = m = 2 QNM frequency for a Kerr BH with
mass Mgy and spin agy, and 02+2n are complex constants that determine the magnitude

and phase of each QNM. The amplitude of the negative frequency modes is small [80]. The
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first three QNMs have been tabulated in Ref. [79], and fitting formuli are also provided.
The QNM frequency woo, can be approximated by

Mprwag, = f1 + f2(1 — agm)”?, (3.83)

and the inverse damping time as9, is given in terms of the quality factor approximated by

1 wazn

= 1 — agn)®. 84
3 gz, @1+ q2(1 — agn) (3.84)

The coefficients for n = 02 can be found in table VIII of Ref. [79]. For n = 3-4, a2, and
wagy, can be linearly extrapolated from the values for n = 1 and 2 as was done in Ref. [83].

The constants C;En are determined by requiring that the inspiral and ringdown wave-
forms be continuous on a “matching comb” centered on the EOB merger time ;. Specifi-
cally, at the times {tys — 29, tar — 0, tar, tar + 9, tar + 20} we require hiQI;Spiral(t) = hgi;gdown(t).
In Ref. [76], 6 was chosen to be equal to 2.3Mpy/M. This gives 5 complex equations for
the 5 unknown complex coefficients C5,,.

The full inspiral plus ringdown waveform is then given by

hinspiral ¢ t <ty
hgz(t) — { 22 ( )

: (3.85)
BERE () >ty
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Chapter 4

Tidal interactions during binary

inspiral

For BNS and BHNS inspiral, tidal interactions are the primary correction to the point-
particle dynamics described in the last chapter. These interactions, which to leading order
are Newtonian effects, have not received much attention because they are O [(%)5375]
corrections to the leading point-particle interactions where M is the total mass, and R
is the NS radius, and thus appear to be 5PN effects. However, the additional (R/M)5
dependence means that they will dominate all PN corrections for systems such as the Earth
and Moon, while for BNS systems where (R/M)® ~ O(10%), we will find they have effects
of similar magnitude to 3.5PN point-particle terms during the inspiral.

For widely separated relativistic sources, the problem of tidal interactions can be solved
by breaking spacetime into two regions as shown in Fig. In the weak-field vacuum region
away from a source, the post-Newtonian expansion can be used. However, in the strong-
field region containing the source, the full Einstein equations must be solved. The results
can then be matched in a buffer region surrounding each source. In the following section we
describe tidal interactions in Newtonian gravity based on the discussion in Refs. [85] [86];
then, in the final section using the method developed in Ref. [87], we solve the perturbed
Einstein equations for the compact objects in the strong-field region and describe how the

solution is matched in a buffer region to the Newtonian description of tidal interactions.

www.manaraa.com

52



53

" Buffer 1 " Buffer 2
Strongfield %, Weakfield / ./  Strongfield
¢ ‘H-;i;if).t.--_":-;ﬁext i : ¢ -h.(:i;l-ﬂf. ----- Q-ﬁ ex

Figure 18 : As shown in Ref. [88], spacetime is decomposed into a weak-field region and a strong-field region
surrounding each compact object (gray). The strong-field and weak-field solutions can be matched in a

buffer region.

4.1 Newtonian tidal interactions

4.1.1 Gravitational potential, multipoles, and tidal fields

In Newtonian gravity the gravitational potential due to a system of extended bodies (Fig.

with density p id]]

"7
To calculate the dynamics of this system, we will find it useful to decompose this potential,
in each domain, into an internal part ¢>mt sourced by the matter in that domain, which we
will write as a sum over multipoles M~ %, and an external part ¢ sourced by the matter
from other bodies, which we will write as a sum over tidal fields Gﬁ. The total potential in

domain will therefore be ¢ = ¢t 4 ¢,

We can expand a multivariate function f(x?) using a Taylor series

G 1
=> A —a) E1op (2] igis (4.2)
£=0 "
where L is a multi-index representing the ¢ indices L = ajas---ay, o = a2 ... g%,
and Jr, = (fv—l;: = W. Using this, we can expand the denominator of the internal

!The gravitational potential energy of a test mass with mass m in this potential is U = m¢. The

gravitational potential energy of the entire system will be given by Eq. .

www.manharaa.com




potential about the center of mass (COM) of the star 2, El by expanding in the variable 2’

1 =1,, L[a 1
w—ﬁy‘zhﬂx_” bﬂﬂx—flm“

=0
o0
(_1)£ / L 1
:Z ($ —Z) 8L = ) (43>
! _
— 14 |2 — Z4|
where J, = a =>—. We note that 0f, =—=— |4 =7 is a symmetric trace free (STF) tensor for & # Z4
because the trace of any pair of indices involves 0; @m = V22t~ |m AR = —4noB)(Z — Z4)

is zero unless & coincides with the COM. The internal potential at a point # can now be

written in terms of the integral over body A,

int =\ d3 Ip(t :U)
(rbA (t,iL') /A

Iw — 7|
3 ! (4.4
= oMK &
where M £ is the ¢th multipole of the body defined by
Mk(t) / Bap(t,7)(z — z4(8) ). (4.5)

The notation T denotes the STF part of a tensor TX. Using the fact that for any two
tensors ST and TE, SLTL) = SLTE) | we have defined M£ as STF because 8Lm
is already STF. The first four moments are the mass, dipole, quadrupole, and octopole,

defined in terms of #* = ' — 2* by

M = /d3xp, (4.6)
M = /d?’a,‘pa_si =0, (4.7)
Mﬁszm@W;%Wmazqa (48)

MUk = /d?’xp[:iifji‘k — %(6%’“ + 07k zt + 6 Eh) |72 = OVF, (4.9)

The dipole is zero because 2 is the COM.
We similarly can expand the external potential about the COM of body A

ST = 3 (e — 2O 0L (b D,

(4.10)
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where the /th order tidal field Gf‘ due to the potential from body B is

GL(t) = —[00¢5(t, T)) 3=z,

= (—1)F 1
-y )Mg(t)agg—@ — (4.11)

(A) _ ok+t
and 8KL = W

relative to the COM of body A. This tidal field includes contributions from the monopole,

As an example, the £ = 2 tidal field GZ leads to a quadratic potential

quadrupole, octopole, ... moments of body B, and these contributions scale with the sepa-

ration 7 of the two bodies as 1/73, 1/r®, 1/r5, ... respectively.

4.1.2 Lagrangian and energy

Given the above expressions for the matter distribution and gravitational potential, we
can determine the kinetic and potential energy of the system and then write down the
corresponding Lagrangian L = T — U. The Lagrangian can then be used to find the
equations of motion (EOM) via the Euler-Lagrange equations.

The total kinetic energy of the system can be decomposed into contributions from the
COM of each body as well as from the internal kinetic energy from motion about the COM
of each body

() = % / Bap(t, 2Rt 7)

= 1 Sep(t, D) (t, &
=35 [ Attt
§Aj§ [ oolth+ =20+ (0= 27

1 .
> (§MA2§1 + Tmt) : (4.12)

A

where we used the definition of the COM, and the internal kinetic energy is defined as

Tint () = % /A Bap(t, )t T) — 24 (b))% (4.13)

For a closed system of gravitationally interacting, extended bodies, the total potential
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energy is

Ut) = % / Bap(t, D)o(t, 7)

1 _ —
_ ; . /A Pap(t, B)o(t, &)
= (U (1) + U (1)) (4.14)
A

We have broken up the potential at each body A into a contribution d)ijt due to sources
inside the body and a contribution ¢%* due to sources outside the body. The corresponding
internal and external contributions to the potential energy associated with each body are

therefore
. 1 .
U ) = 5 [ dap(t. D)0 0.3), (415)
A

and

= _% 3 %Mﬁ(t)Gﬁ(t). (4.16)

In the last line we again used the fact that Gﬁ is STF to rewrite the integral as a STF
multipole.

The Lagrangian for the system can now be written
L=>Y" Loz 41 i Larkar 4 o (4.17)

where the internal Lagrangian for each body is defined as Lifr“t = Tj{’t — jft.

The internal dynamics of body A can be determined from the Poisson, Euler, and
continuity equations as well as the equation of state (EOS), or for relativistic stars, the
Einstein equation, conservation of stress-energy, and the EOS. However, we would like
instead to describe the dynamics in terms of a set of canonical variables so that we can
use the Lagrangian formalism. To do this, we use the fact that perturbations of a stable

spherical star (both nonrelativistic and relativistic) can be decomposed into modes n, each

belonging to a single spherical harmonic, and each oscillating with a characteristic frequency
wan. The EOM for the contribution to the ¢th multipole of body A due to mode n (M%)

is

M%, + WA, ME =0, (4.18)
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The quantities M ﬁn can therefore be the canonical variables. The Lagrangian that produces

this EOM via the Euler-Lagrange equations is, up to a constant a.agp,
i L 7L L asL
L%En = aA@n(MAnMAn - w?élnMAnMAn)v (419)

so that the total internal Lagrangian of body A is L'}* = Yoo Lij&n. Since this La-
grangian is derived from the kinematic assumption of simple harmonic motion and not from
Newtonian dynamics, it will be true for relativistic stars as well, (assuming the complete-
ness of outgoing modes for describing the fluid, and ignoring additional gravitational wave
degrees of freedom).

The constant can be found by assuming a situation in which the modes of body A evolve
adiabatically [89]—driven by the motion of body B at a frequency much slower than the
mode frequency. The time derivatives M f{n will therefore be zero, and the Euler-Lagrange
equation for the entire Lagrangian will be

d oL 0L
dtomk oMk

0 1. ITox1 0
0= OMEL Z [2MAZ‘24 T 9 Z E <Z Mj") G - Z Z O‘AénwinMﬁan{n
An A =0 " n =0 n
1

where the multipoles M ff are hidden in the definition of Gé, and we used the fact that
Lyy 1MLGL—OO 1MLGL—OO Larkah 4.2
32D gMAGh =) SM{Gl =) MG (4.21)
A £=0 =0 =0

for a two body system as can be shown by writing G% explicitly in terms of M é using

Eq. 1' Eq. 1} demonstrates that the fth multipole M ﬁn can be written explicitly
in terms of the ¢th tidal field Gﬁ with only a single EOS dependent constant

Summing over n we obtair[]
Mj = AaGY, (4.23)

where Mgy = > Aagy, is called the tidal deformability of star A, and A4y, is the component

that contributes to M jn. We will derive this quantity from the perturbed Einstein equations

3We emphasize that this relation holds only for adiabatic changes in the tidal field. When the tidal field

changes at a rate close to the mode frequency, resonance can occur as will be discussed below.
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and an EOS model in the next section. The constant a4y, in the Lagrangian can finally be

written
1
= — 4.24
A Aln 2 im0 An ( )
In general, the energy of a system with canonical variables ¢*

6L
E = — L. (4.25)

g

For the Lagrangian here, this is equivalent to reversing the sign on the potential energy

terms, so that the total energy is

E= Z MA ZA T Z Z'MﬁGA + Z Z f')\ MﬁnMﬁn + lenMﬁnMﬁn)
200\ apn, wA

(4.26)

4.1.3 Tidal Corrections to the post-Newtonian waveform

In order to derive the lowest order corrections to the post-Newtonian waveform, we now
specialize to the case of circular orbits and include only monopole-monopole and monopole—
quadrupole interactions. We also assume that for body A the majority of the quadrupole

oscillates with a natural frequency w4 . The Lagrangian for such a system is

uM 1

1 1
I — M ; 1] z] 2 4.9
2uz +7r + !Q 20i;— +(’)< >+4)\1w%( Q ) (4.27)

where z¢ = 24 — 2%, = My Ms/M is the reduced mass, and we have moved to the center of
mass frame of the system (M;z% 4+ Myz4 = 0). We have also simplified notation by redefining
A4 as the £ = 2 tidal deformability of body A, and we have suppressed the contribution
from the quadrupole of body 2 which will have the same form as that from body 1 and can
simply be added to the final results. The Euler-Lagrange equations now give the following

equations of motion

. . 1
7 +wiQy = MMM%@';’;, (4.28)
P=o—pt ﬂQl Oijie - (4.29)

The first equation represents forced oscillations. Under the assumption of circular orbits
2H(t) = rn’(t) where n’ = (cos ¢,sin ¢, 0), and using the fact that

nt®

oL = (-1 (2~

(4.30)
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we find that the forcing function has a frequency of twice the orbital frequency 2 where
¢(t) = Qt because

) o %cos?qﬂ—% %sin?qﬁ 0
n') = nind — §5” = | 3sin2¢ —lcos2¢+% 0 |. (4.31)
0 0 —3

The solution to the quadrupole is

S %ﬁcos%)—k% %ﬁsin%b 0

ij 2A1 .

()= 3 %1_152 sin 2¢ —%ﬁ cos2¢+3 0 |, (4.32)
0 0 -1

where £ = Q/w;. Note that resonance will occur if the orbital frequency approaches half

the mode frequency.

Using this result and 3! = —rQ?n’ for circular orbits, the second equation becomes

: Mn' 9 M3\ 3 :
—rQn' = — - =221 g 4.33
e r2 4 ( +1—4§2>n (4.33)

To first order in A we find
_ 3 3 MQ )\11[75

=Mzt 1+ (1 —= 142 4.34
r(x) x [+4(+1—4§2)M1M5+(_> , (4.34)

where 2 = (MQ)?/? is the standard post-Newtonian parameter.
With these solutions, the energy can be found from the Lagrangian by reversing the

sign on the potential energy terms. The result is

3 — 4452 ) M2 )\1375

1 9

The rate of energy loss due to gravitational radiation can be found from the quadrupole

formula F = —%(Qf_ﬂf_ﬂ ). The quantity Qf;ﬂ. is the total quadrupole of the system, and can

be calculated using the parallel-axis theorem for the total quadrupole of the system

HOE / d*zp(t, )t (4.36)
= /A dap(t, 2)z' (4.37)

A
= > a7 (1) + Q4 1), (4.38)

A

where the first term in the sum is the multipole due to the monopole of body A, and the
second term Qi{ is the multipole about the COM of body A as defined in Eq. (4.5). (The
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parallel-axis theorem does not hold for higher multipoles, and in general, the expression for
the total multipole M% in terms of the individual multipoles M ﬁ will be more complicated.)
The total radiated energy is then

M/Msy + 2 — 262\ My \ab
5[1+6</2+ f) 2 T

o B M,
1 1—4¢2 M, M

5

+1¢2]. (4.39)

The post-Newtonian waveforms incorporating tidal interactions can now be readily eval-
uated from the above expressions for the energy of the binary E and the luminosity £ = —E.
The TaylorT1 expressions are obtained by simply adding the point-particle PN and tidal

corrections together

1 A
B(z) = —5Mna [1 + (PP-PN) — 9@ﬁ15 +1e 2] , (4.40)
mi
my + 3ma A\

mi M5

32 5 5

L(x)= =N [1 + (PP-PN) + 6 P41 2] (4.41)

then evaluating dE/dx to obtain & = ﬁ. The TaylorT4 waveform expands this ratio
to obtain ~
dz 64 nx )\
1+ (PP-PN) — 156— 4.42

and \ is the mass weighted total tidal deformability defined by

1 M1 —+ 12M2 M2 + 12M1
— A A
2 ( M1 1+ M2 2) ’

A= (4.43)

which has the property that A = A\; = Ay when M; = M,. The TaylorF2 phase correction
can be found by using the methods of Section The phase can then be written

Yoo f) = 2m fte — 2¢p. — — + i(7rM £)7°3 |1 + (PP-PN) — 624Mi(7rM f)10/3] . (4.44)

128n

4.2 The tidal deformability for relativistic stars

We will now describe the method used in Ref. [87] for determining the ¢ = 2 tidal deforma-
bility A of a star from the equation of state. As in [87], we consider a static, spherically
symmetric star, placed in a static external quadrupolar tidal field G¥. To linear order, we
define the tidal deformability A relating the star’s induced quadrupole moment Q% to the
external tidal field,

QY = \GY. (4.45)

The coefficient A is related to the [ = 2 dimensionless tidal Love number ks by

ko = g)\R_5. (4.46)
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The star’s quadrupole moment Q% and the external tidal field G¥ are defined to be
coefficients in an asymptotic expansion of the total metric at large distances r from the
star. This expansion includes, for the metric component g4 in asymptotically Cartesian,
mass-centered coordinates, the standard gravitational potential M /r, plus two leading order
terms arising from the perturbation, one describing an external tidal field growing with 72

and one describing the resulting tidal distortion decaying with 7—3:

1 .
( +2 git) _ it 4 gext (4.47)
M 309 . . 1 GY o

where n' = 2'/r and both Q;j and G;; are symmetric and traceless. The relative size of
these multipole components of the perturbed spacetime gives the constant A relating the
quadrupole deformation to the external tidal field as in Eq. .

To compute the metric ([4.48)), we use the method discussed in [87]. We consider the
problem of a linear static perturbation expanded in spherical harmonics following [90].
In the quasiequilibrium limit, the tidal deformation will be axisymmetric around the line
connecting the two stars which we take as the axis for the spherical harmonic decomposition.
The only azimuthal number will therefore be m = 0.

A static (zero-frequency) linear ¢ = 2 perturbation of a spherically symmetric star is
associated with an even-parity perturbation of the metric, which in the Regge-Wheeler

gauge [91] can be simplified [87] to give

ds? = —e**) [1 + H(r)Yao(0, ¢)] dt* + €** ) [1 — H(r)Yao(0, ¢)] dr*

20y ) . ) (4.49)
+r?[1 — K(r)Ya0(0, ¢)] (d9° + sin” 6do*)

where K (r) is related to H(r) by K'(r) = H'(r) + 2H (r)®'(r). Here primes denote deriva-
tives with respect to r. The corresponding perturbations of the perfect fluid stress-energy
tensor components are 6T = —de(r)Yao (0, ) and 6T, = dp(r)Yao(0, ¢), where € is the

energy density and p the pressure. The function H(r) satisfies the differential equation

(_GiZA —2(P)? + 20 + gA' + ;@' —20'AN + %(‘I)/ + A’)> + <i P — A’) H' +H" = 0.
(4.50)

Here f is given by
de = fop (4.51)

which for slow changes in matter configurations corresponds to f = de/dp.
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The method of calculating the tidal perturbation for a general equation of state table
is similar to the method of calculating moment of inertia in the slow rotation approxima-
tion [92]. The specific implementation we use follows the moment of inertia calculation in

Appendix A of [54], via an augmentation of the OV system of equationsﬂ:
om\
e = (1 — —) , (4.52)

"
dd 1 dp

2= - = 4.53
dr e+pdr’ (4.53)
dp m + 4mr3p

xr _ _ -~ 4.54
dr (€+p)r(r—2m)’ (4.54)
Z—T: = 4rrle (4.55)

The second-order differential equation for H is separated into a first-order system of ODEs
in terms of the usual OV quantities m(r), p(r), and €(p), as well as the additional functions
H(r), B(r) = dH/dr, and the equation of state function f(p) = de/dp

dH

W=ﬂ (4.56)
% =2 (1 —2%)_1}1{—% [5e +9p + f(e +p)] + % +2 (1 —2%)_1 (g +47rrp>2}
+ ¥ (1 — 2?>_1 [—1 + % +27rr2(e—p)] .

(4.57)
These are combined with Eqs. (4.52)—(4.55)), and the augmented system is solved simul-

taneously. The system is integrated outward starting just outside the center using the
expansions H(r) = agr? and B(r) = 2agr as 7 — 0. The constant ag determines how much
the star is deformed and can be chosen arbitrarily as it cancels in the expression for the
Love number.

The ODE for H(r) outside the star, where T, = 0, has a general solution in terms of
associated Legendre functions of the first P (x) and second Q)'(x) kind for n = m = 2
and z > 1 given by

H=c1Q3(r/M —1) + coPF (r/M —1). (4.58)

These functions are defined by

Pi(x) = 3(1 — %) (4.59)
X 333 — o
Q%(m):g( 2 1)In (mi) —322_? (4.60)

“Here we present the equations in terms of the radial coordinate r; the extension to the enthalpy variable

1 used in [54] is straightforward.
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and have the asymptotic properties Q% (ﬁ — 1) ~ % (%)3 and P22 (ﬁ — 1) ~ —3 (ﬁ)2
at large r. We can now compare this solution to the asymptotic behavior of g, given
in Eq. to relate the coefficients ¢; and cy to the external tidal field. Writing the
tidal field and quadrupole moments in terms of the corresponding ¢ = 2,m = 0 spherical
harmonic coefficients, GoYa0(6,¢) = G¥nin?, and QoY20 (0, ¢) = Q¥Unin/ = —\GYnin/ =

—AGoYa(6, ¢), as was done in [87], we obtain the result

Cc1 = gm, Cy — —gM Go. (461)
We can now determine the strength of the tidal field Gg that caused the perturbation by
matching the solution for H and its derivative at the boundary of the star » = R. This will

then give us an expression for the tidal Love number ks. Defining the quantity

RB(R)
= 4.62
Y= (4.62)
for the internal solution, the [ = 2 Love number is finally
8C®
ko= ——(1- 2C)2[2+2C(y — 1) — ]
X {26’[6 — 3y 4 3C(5y — 8)] +4C3[13 — 11y + C(3y — 2) + 2C*(1 + )] (4.63)

+3(1—-2C)?2 -y +2C(y — 1)]In(1 — 20)}_1,

where C' = m/R is the compactness of the star.

For stars with a nonzero density at the surface (for example strange quark matter or
an incompressible n = 0 polytrope), the term (f/r)(®' + A’) in Eq. blows up at the
surface r = R and H'(r) is no longer continuous across the surface. Following the discussion
in [93] for an n = 0 polytrope, this discontinuity leads to an extra term in the expression

bove f
ey _RB(R) 4T R3e_
~ H(R) M

where e_ is the density just inside the surface.

(4.64)
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Chapter 5
Gravitational-wave data analysis

The interpretation of data in gravitational-wave astronomy differs in many ways from that
in other fields. In particle physics, for example, one can often perform an ensemble of
experiments with carefully controlled parameters. A frequentist interpretation of probability
can then be used: in the limit of a large number of experiments the probability P(A) of
outcome A is the ratio of the number of times A was the outcome to the total number of
outcomes. Gravitational-wave astronomy is fundamentally different in that we cannot set
up an ensemble of identical binary inspiral events, for example, and we are often interested
in estimating the parameters themselves (sky location, binary orientation, masses, spins,
and tidal parameters) of individual events. A natural method for answering such a question

is that of Bayesian inference.

5.1 Bayesian inference

The key theorem in Bayesian inference is Bayes’ theorem

P(B)P(A|B)

P(BIA) = =25

(5.1)

where P(A|B) denotes the conditional probability that A is true given that B is true. This
theorem can be used for performing parameter estimation in the following way. Given a data
set D from a detector and prior information I, the posterior probability density function
(PDF) for the parameters § of a model H are given by [94]

p(O1H, I)p(D|0,H, 1)

6|D,H,1I) =
p(OID, 1, 1) (DI, 1)

(5.2)

The quantity p(D\@j H, I) is known as the likelihood, and can be calculated in the frequen-

tist sense; given a hypothetical ensemble of events with parameters in the volume clH_’7 the
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likelihood is the probability density of obtaining the data D from a detector. The prior
distribution of the parameters p(6|H, I) is determined by the hypothesis and prior informa-
tion. In the denominator, the evidence Z = p(D|H, I) is a normalization constant, and if
needed, can be evaluated explicitly by integrating Eq. over the parameter space and
using the fact that the integral over the left hand side is 1

Z = p(D|H,I) = /p(eﬂH,I)p(D\é’,H,f) de. (5.3)

Because Z is the prior weighted integral over the likelihood, it is also called the marginal-
ized likelihood. For a high dimensional parameter space this integration is computationally
challenging, although there exist methods such as nested sampling and thermodynamic inte-
gration that can perform it (see for example Refs. [95] and [96] for their use in gravitational
wave data analysis).

If one is only interested in a subset of the parameters 64 where § = {gA, B }, the other
parameters 68 can be integrated out to obtain a marginalized PDF over only the parameters
of interest

p(04|D,H, 1) = /p(§|D, H,1)d6". (5.4)

This is done, as we shall see, if we are only concerned with the PDF for the intrinsic
parameters of a binary system such as masses and tidal parameters, and are not concerned
with the extrinsic parameters such as sky location and orientation relative to Earth.

In addition to estimating the parameters of a specific model, we can also in principle cal-
culate the posterior probability P(H;|D, I) that model H; is true using the model selection
form of Bayes’ theorem
P(HA1)P(D[Hi, 1)

P(H;|D,I) = PO

(5.5)

The quantity Z = P(D|H;, I) is the evidence or marginalized likelihood given by Eq. .
P(H;|I) is the prior probability of H; which is sometimes a subjective measure of one’s
prior belief that hypothesis H; is true. The quantity in the denominator P(D|I) is the
marginalized probability of obtaining the data D. It can be calculated if there exists a
complete set of independent hypotheses (3>, P(H;|D,I) = 1 and H; N H; = 0 for i # j).
The marginalized probability is therﬂ

P(D|I) =) P(H:|I)P(D|H;,1). (5.6)

!The prior was left out of the corresponding expression in Ref. [04].
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In practice we don’t always have a complete set of hypotheses, so we cannot calculate the
posterior for each model. We can, however, calculate the ratio of posteriors for two models
known as the odds ratio

P(H; ]D I)
P(H,;|D,I)
_ P(H|I)

- P(H4|I)

Ol,j
———A\; j, (5.7)

where

is the Bayes factor or likelihood ratio.

5.2 Statistical properties of the output of gravitational-wave detectors

We will now briefly describe in this section the output of gravitational-wave detectors in
the possible presence of a gravitational wave as well as detector noise, and then derive the
probability that a gravitational wave is present. In the remainder of the chapter we will
then apply the above Bayesian techniques to address the questions of parameter estimation.

As discussed in Chapterlthe gravitational wave h;; = h+e + hxe has two transverse

polarizations e’ i and e . In the X-Y—7 coordinate system of a grav1tat10nal wave traveling

in the n direction, the polarlzatlon tensors are
e = X'X7 - Y'Y (5.9)
el =XV 4 ViXI. (5.10)

The response of the detector arms of length L, expressed in terms of the scalar strain

h = AL/L, can be expressed by contracting the waveform with a tensor D;;
For a Michelson interferometer with arms in the p and ¢ directions [67]

L.
Dyj = 5(pibj — didy)- (5.12)

In terms of the components hy and hy, the strain can be written
h:F+h++F><h><, (5.13)

where F, and Fy are the response functions for the two polarizations. For a detector with a

90° opening angle between the arms, they can be expressed as functions of the sky position
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(0, ¢) relative to the detector and polarization angle 1 (see Fig. as [97]
F+ = Dije;;
L oini  sisiveigi (it
=50 = ¢'P) (XX = YY)
1
= —5(1 + cos? 6) cos 2¢) cos 2 — cos 0 sin 2¢ sin 21), (5.14)
FX = Dijeixj
Loini  sisin( it 4 Yrévd
=50 = ¢ @) (XY + YY)
1
=3 (1 + cos? 0) cos 2¢ sin 2¢) — cos 6 sin 2¢ cos 2. (5.15)
As an example, in the optimally oriented § = 0 configuration, a waveform written as the
complex quantity h(t) — ihy (t) = A(t)e*®*® results in the strain h(t) = —A(t) cos[2(¢ —
¥) — ®(t)].

Figure 19 : For detector arms in the p and ¢ directions, the sky location of a source —n is given by the
usual spherical coordinates (6, ¢), where 6 is the polar angle from the axis normal to the detector, ¢ is the
azimuthal angle from the p direction, and 7 = (—6, ¢+ ) is the direction of propagation of the gravitational
wave. The polarization angle 1 is the angle measured counterclockwise about the direction of propagation

f from the line of nodes (k x 7) to &.

In addition to the GW signal h(t), a real detector will have noise n(t) such that the
output s(t) of the detector is

s(t) = n(t) + h(t), (5.16)

where we have assumed the noise is additive (the presence of a GW does not affect the
statistical properties of the noise). We will also assume that the noise is stationary, which

means the statistical properties of the noise do not change with time.
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An important property of the noise is its power spectrum. The power in the noise is

defined as the time average of n(t) over some large time interval T

(n?) = lim — / e e (5.17)
T—oo T —T/2

For stationary noise, this average will be independent of the time. The power can be

reexpressed in terms of the power spectral density (PSD) S,,(f) by [67]

(n?) = i Sn(f) df, (5.18)
where the PSD
9 T/2 . 2
Su(f) = lim = / n(t)e=2i1t gy (5.19)
T—oo T —T/2

is the absolute square of the Fourier transform of the signal. The PSD can equivalently be
expressed in terms of the Fourier transform R, (f) of the autocorrelation function R, (7) =
(n(t)n(t+ 7)) as

Su(f) =2 / T Ry (P)e T dr = 200 (f). (5.20)
Another equivalent expression is
1
() = 35a())o(f = [). (5.21)

Another assumption that we will make is that the noise is Gaussian. For Gaussian noise
n(t), the discretely sampled noise time series is a sequence of correlated Gaussian random
variables {n;} measured at times ¢A¢. In the limit At — 0, the joint probability distribution

for this noise sequence is given by [67]

paln(t)] oc e (/2 (5.22)
where () (f)
(a,b) = 4Re /0 Ay (5.23)

is an inner product weighted by the noise PSD.

5.3 Detection

To determine if there is a gravitational wave present in the data, we can compare the two

mutually exclusive hypotheses

Ho : s(t) = n(t) (There is no gravitational wave),

Hi : s(t) = n(t) + h(t) (There is a gravitational wave).
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The probability that there is a gravitational wave is given by

P(H\|I)P(D[Hy, 1)
P(DII)

B A1

N ALOJrP(/}'lou)/P(/)L[l|I)7

P(H.|D,I) =

(5.24)

where P(DI|I) = P(Ho|I)P(D|Ho, )+ P(H1|I)P(D|H1,I) and A o is the Bayes factor (or
likelihood ratio) defined in Eq. . In addition, when assigning priors we must obey the
constraint P(Ho|l)+ P(H1|I) = 1. For a GW signal that can be described by the unknown
parameters 6 and noise which in this case has no unknown parameters, the Bayes factor

can be reexpressed as [9§]

Arg = /A(”) de, (5.25)

where
~ p(0|H1, )p(D|G, H1, I)
A(9) =
©) p(DIHo,T)
_ p(01H, I)pals(t) — h(t;0)]
puls(t)]
= p(O]Hy, I)elsMO) = (OMO)/2, (5.26)

Another quantity that we will be interested in is the signal to noise ratio (SNR), which
is defined as the ratio of the matched filter (s,h) (a Gaussian random variable) when a

GW is present to the standard deviation of the matched filter when a GW is not present

(V/(h, h)):

N
VR

When a GW is not present, p is a Gaussian random variable with (p) = 0 and Var(p) =1,
while when a GW is present, (p) = \/(h,h) and Var(p) = 1. The quantity (p) = \/(h, h) is

sometimes referred to as the characteristic SNR of the signal, and describes the characteristic

(5.27)

strength of a GW for a given detector configuration [67].

5.4 Fisher matrix approximation

Although we now have in principle all the tools necessary to estimate the parameters of
a binary, this task is still computationally challenging. In this section we will discuss
an analytical approximation for estimating the parameters known as the Fisher matrix
approximation which applies to signals with high SNR, and then discuss in the next section

a more general method known as Markov Chain Monte Carlo (MCMC).
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For a binary event with actual parameters é, we can choose as our best estimate of
the parameters 0 the value, known as the mode, that maximizes A(é) and is given by the
solution to 8iA(6T) = 0. It is possible for there to be multiple local maxima, however for
signals with high SNR, A(f) will be a narrowly peaked function and the mode 6 will be
close to the actual parameters 6. Using the fact that the log of a function has the same
mode as the function, the relation s = n 4 h(f), and the shorthand po(8) = p(d|H1, 1), the
mode can be found from Eq. [98]

0= 8;In A(6)

= 0 1npo(8) + (n -+ h(B), h(0) — 5(h(0), h(8))
—v; = &; Inpo(0) + (h(0) — h(0),8;h(H)), (5.28)
where
v; = (n, Bih(0)). (5.29)

Because n(t) is a sequence of zero mean ((n(t)) = 0) Gaussian random variables, each v; is
a zero mean Gaussian as well. The joint distribution of v; over all parameters will therefore

be a multivariate Gaussian with covariance I';; known as the Fisher matrix

Lij = Cov(vi, vj) = ((vi = (vi))(v; = (v5)))

e

(
= (vivy)

((n, 0;12(6)) (n, 0;1(9)))

= (9:h(9),0;1(9)), (5.30)

where we used Eq. (5.21]) in going to the last line.
If the signal has high SNR and is narrowly peaked, the true parameters 6 will be close

to the mode 6§, and we can linearize the difference in the corresponding waveforms
h(0) = h(0) + d;h(0)AG; + O(AG?), (5.31)
where A9; = 6; — 91 Eq. can now be used to provide an explicit expression for 0
AG; = =T (v + 9;Inp). (5.32)

The random variables Af; have means

(A6;) = —T;;'9; Inp(0) (5.33)
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and covariance

Eij = Cov(Ab;, Adj) = ((Ab; — (Ab;))(AG; — (Ab))))
Tt (5.34)

Note that when the prior is uniform, (A6;) = 0 and ¥;; = Cov(A;, Af;) = (AO;Ab;). The
joint probability distribution for A#; given the mode 0; is therefore

p(AGi]6;) = ! o355 (A0i—(A6:))(A0;—(A6;)) (5.35)
(QW)Ndet(Ei]‘)

The n-o error ellipsoid which is a contour of p(A;]6;) is defined by
(AG; — (A0:))(A0; — (A0;))" = n®. (5.36)
The variance in A6; is
o7 = (A0 — (A0:))?) = T, (5.37)
and the correlation coefficients r;; are

rij = <(A01 - <Aezi—)(O—A03 - <AGJ>)> _ UZ;J ] (5.38)

The correlation r;; ranges from -1 to 1, with 7;; = 0 indicating no correlation between the

parameters and r;; = £1 indicating the parameters are completely degenerate.

5.5 Markov Chain Monte Carlo

In general, the PDF for the parameters of a gravitational-wave event cannot be approxi-
mated as a multivariate Gaussian centered on the maximum likelihood (for some parameters
the marginalized PDF is even multimodal), and so the Fisher matrix will fail to give an
accurate estimate of the uncertainty in the parameters. What we need to understand the
overall structure of the PDF is to sufficiently sample the entire PDF instead of just the
region around the maximum likelihood. Sampling a D dimensional parameter space with
N points in each parameter requires O(NP) evaluations of the posterior, and this rapidly
becomes an intractable problem. Fortunately there are adaptive techniques for sampling
more finely regions where the PDF is larger. One such technique is known as Markov
Chain Monte Carlo (MCMC). The essential idea of MCMC is to sample each point in the
parameter space with a probability proportional to the PDF itself. If this is done, then the
marginalized PDF over the parameters 67 is found by simply binning the sampled points

and making a histogram over the remaining 1 or 2 parameters of interest 6.
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The algorithm is as follow Begin at the point 0;_1 and draw a new point 6; from
a distribution p(f;]f;_1). (Because the new point depends on only the previous point, the
sequence of points that results from repeating this process is called a Markov Chain.) If

the distribution p(@\gi,l) satisfies the detailed balance equation

(6 1)p(6:]0;-1) = 7(6:)p(0;-110%), (5.39)
then each point 0; will eventually be visited with probability W(g) This can be seen by
integrating both sides of Eq. 1) over all possible choices for the previous point 9_;-_1 in
the chain to obtain

/ w (B )p(Bi\F ) dBs_y = n(B)). (5.40)

This indicates that if §;,_; is drawn from m(0;—1) then so is 0;.

There are several possible ways to draw the new point 9_; such that the transition prob-
ability function p(é;|0_;,1) satisfies the detailed balance equation . The most common
is given by the Metropolis-Hastings algorithm. In this algorithm a new point is drawn
from some proposal distribution q(9_;-|9_;_1) for example a Gaussian. This new point will be

accepted with probability

a(f;_1,0;) = min <1, W(?)Q(g’jll@))> . (5.41)

If this new point is not accepted, then set 02 = @_1 instead. The transition probability will

therefore be

— —

p(0:-110;) = q(0:10;_1) (0,1, 65). (5.42)

This can be shown to satisfy the detailed balance equation.

There are many methods available to find proposal distributions ¢ that efficiently sample
the entire parameter space. Furthermore, the proposal ¢ can be changed after each itera-
tion and still satisfy the detailed balance equation. In addition, methods such as parallel
tempering [100] are available which make it easier for a chain to jump between different
modes of a PDF.

2The discussion in this section is based